Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive modeling and microstructure evolution of TC4 titanium alloy in dual-phase zone based on strain compensation
Authors: Li Peiai1 2  Song Yongqiang1  Wei Chao2  Zhang Qingwei1 
Unit: 1. Ficont Industry (Beijing) Co.  Ltd.  Beijing 101106  China  2. School of Mechanical Engineering  Beijing Institute of Technology  Beijing 100081  China 
KeyWords: TC4 titanium alloy  high-temperature deformation  rheological stress  constitutive model  microstructure evolution 
ClassificationCode:TG115;TG146
year,vol(issue):pagenumber:2025,50(5):259-267
Abstract:

Based on isothermal compression thermal-simulation experiments with the deformation temperature of 850-950 ℃ and the strain rate of 0.01-10 s-1, the high-temperature deformation behavior of TC4 titanium alloy in the α+β dual-phase region  was studied, and an Arrhenius-type constitutive model based on strain compensation was established to describe the rheology behavior of TC4 titanium alloy. The results show that as the deformation temperature increases and the strain rate decreases, the peak stress of TC4 titanium alloy decreases. The volume fraction of α phase decreases with the increasing of deformation temperature and strain rate, while the deformation amount has an insignificant effect on it. Increasing the deformation amount could increase the accumulation of dislocations and the distortion energy, thereby promoting the dynamic recrystallization of α grains. Reducing the strain rate could promote the formation and development of dynamic recrystallization of α grains. The prediction results of the established constitutive model for rheological stress are close to the experimental results. The linear correlation coefficient between the two is 0.999, and the average absolute error is 2.94%, which indicates that the constitutive model has high prediction accuracy. 

Funds:
北京市自然科学基金资助项目(4242047)
AuthorIntro:
作者简介:李沛艾(1988-),男,博士,工程师,E-mail:beibeipeipei@126.com
Reference:


[1]Egea S J A,Celentano J D,Rojas G A H,et al.Thermomechanical analysis of an electrically assisted wire drawing process
[J].Journal of Manufacturing Science and Engineering,2017,139(11):1-7.


 


[2]Ji S D,Li Z W,Wang Y,et al.Joint formation and mechanical properties of back heating assisted friction stir welded Ti-6Al-4V alloy
[J].Materials & Design,2017,113:37-46.

 


[3]Valoppi B,Egea S J A,Zhang Z,et al.A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy
[J].CIRP Annals-Manufacturing Technology,2016,65(1):309-312.

 


[4]Li J L,Wang B Y,Ji H C,et al.Effects of the cross-wedge rolling parameters on the formability of Ti-6Al-4V alloy
[J].The International Journal of Advanced Manufacturing Technology,2017,92:2217-2229.

 


[5]Li P A,Wang B Y,Cuiping Y,et al.Study on necking defects,microstructure and mechanical properties of TC4 alloy by cross wedge rolling
[J].International Journal of Material Forming,2022,15(6):75.

 


[6]唐伟,余传魁,汪昌顺,等.Ti-6Al-4V合金螺栓滚压过程中的组织演变规律研究
[J].稀有金属,2023,47(11):1486-1494.

 

Tang W,Yu C K,Wang C S,et al.Microstructure evolution of Ti-6Al-4V alloy bolt during thread rolling process
[J].Chinese Journal of Rare Metals,2023,47(11):1486-1494.

 


[7]李东宽,郭岩,杨立新,等.TC4钛合金两相区的热变形行为及微观组织
[J].铸造技术,2022,43(2):114-119.

 

Li D K,Guo Y,Yang L X,et al.Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region
[J].Foundry Technology,2022,43(2):114-119.

 


[8]Neminathan P V,Velpari M S,Ananda Rao S R,et al.Development of ring forgings in Ti-6Al-4V alloy for aero-engine applications
[J].Transactions of the Indian Institute of Metals,2008,61(5):355-361.

 


[9]刘婉颖,朱毅科,林元华,等.热处理对TC4钛合金显微组织和力学性能的影响
[J].材料导报,2013,27(18):108-111.

 

Liu W Y,Zhu Y K,Lin Y H,et al.Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy
[J].Materials Reports,2013,27(18):108-111.

 


[10]翟大军,税玥,袁满,等.α相含量及形态对TC4钛合金组织和力学性能的影响
[J].金属热处理,2019,44(10):129-134.

 

Zhai D J,Shui Y,Yuan M,et al.Effects of content and morphology of α phase on microstructure and mechanical properties of TC4 alloy
[J].Heat Treatment of Metals,2019,44(10):129-134.

 


[11]李四清,刘晶南,王旭,等.初生α相含量对TC4钛合金性能的影响
[J].中国有色金属学报,2013,23:S67-S70.

 

Li S Q,Liu J N,Wang X,et al.Effect of primary α-phase volume fraction on mechanical properties of TC4 titanium alloy ring forging
[J].The Chinese Journal of Nonferrous Metals,2013,23:S67-S70.

 


[12]Bruschi S,Poggio S,Quadrini F,et al.Workability of Ti-6Al-4V alloy at high temperatures and strain rates
[J].Materials Letters,2004,58(27/28):3622-3629.

 


[13]Luo J,Li M Q,Li H,et al.Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy
[J].Materials Science & Engineering A,2009,505(1-2):88-95.

 


[14]Dipti S,Sumantra M,Bhaduri A K.Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel
[J].Materials and Design,2009,31(2):981-984.

 


[15]Zhou M,Clode M P.Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation
[J].Mechanics of Materials,1998,27(2):63-76.

 


[16]Lin Y C,Chen X M,Liu G.A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel
[J].Materials Science & Engineering A,2010,527(26):6980-6986.

 


[17]Samantaray D,Mandal S,Borah U,et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel
[J].Materials Science & Engineering A,2009,526(1-2):1-6.

 


[18]Zhang B,Shang X D,Yao S,et al.A comparative study on Johnson-Cook, modified Johnson-Cook, modified Zerilli-Armstrong and Arrhenius-Type constitutive models to predict hot deformation behavior of TA2
[J].High Temperature Materials and Processes,2019,38(2019):699-714.

 


[19]Sellars C M,Mctegart W J.On the mechanism of hot deformation
[J].Acta Metallurgica,1966,14(9):1136-1138.

 


[20]McQueen H J,Ryan N.Constitutive analysis in hot working
[J].Materials Science & Engineering A,2002,322(1-2):43-63.

 


[21]Liu H Q,Chen Z C,Yu W,et al.Deformation behavior and constitutive equation of 42CrMo steel at high temperature
[J].Metals,2021,11(10):1614.

 


[22]Mandal S,Rakesh V,Sivaprasad P,et al.Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel
[J].Materials Science & Engineering A,2009,500(1-2):114-121.

 


[23]Murugesan M,Sajjad M,Jung D W.Microstructure evaluation and constitutive modeling of AISI-1045 steel for flow stress prediction under hot working conditions
[J].Symmetry,2020,12(5):782.

 


[24]Quan G Z,Luo G C,Liang J T,et al.Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range
[J].Computational Materials Science,2015,97:136-147.

 


[25]Alabort E,Putman D,Reed R.Superplasticity in Ti-6Al-4V:Characterisation, modelling and applications
[J].Acta Materialia,2015,95:428-442.

 


[26]Zong Y Y,Shan D B,Xu M,et al.Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation
[J].Journal of Materials Processing Technology,2009,209(4):1988-1994.

 


[27]罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其流动应力模型
[J].中国有色金属学报,2008,18(8):1395-1401.

 

Luo J,Li M Q,Li H,et al.High temperature deformation behavior of TC4 titanium alloy and its flows stress model
[J].The Chinese Journal of Nonferrous Metals,2008,18(8):1395-1401.

 


[28]Luo J,Ye P,Han W C,et al.Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region
[J].Transactions of Nonferrous Metals Society of China,2019,29(7):1430-1438.

 


[29]Ning Y Q,Xie B C,Liang H Q,et al.Dynamic softening behavior of TC18 titanium alloy during hot deformation
[J].Materials & Design,2015,71:68-77.

 


[30]Li J L,Wang B Y,Qin Y,et al.Investigating the effects of process parameters on the cross wedge rolling of TC6 alloy based on temperature and strain rate sensitivities
[J].The International Journal of Advanced Manufacturing Technology,2019,103:2563-2577.

 


[31]刘荣娥,王宝雨,冯鹏妮,等.粉末冶金TC4钛合金热压缩动态软化行为分析
[J].稀有金属材料与工程,2021,50(7):2447-2454.

 

Liu R E,Wang B Y,Feng P N,et al.Dynamic softening behavior analysis of powder metallurgy TC4 titanium alloy during hot compression
[J].Rare Metal Materials and Engineering,2021,50(7):2447-2454.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com