Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Abnormality detection method for hydraulic pump of die forging press based on multi-signal fusion and CNN
Authors: Yuan Chao1 2  Liu Ziwen1  Wang Loufeng3  Wang Zhiwei3  Li Zhicheng1  Yang Bo4  Yu Zhenjun4  Bao Hongwei4  Zhang Tianmin4  Ling Yunhan1  Shi Yiqing1 Zhang Hao1 
Unit: 1.China Academy of Machinery Beijing Research Institute of Mechanical & Electrical Technology Co.  Ltd.  Beijing 100083  China 2. School of Mechanical Science & Engineering  Huazhong University of Science and Technology  Wuhan 430074  China 3.Zhejiang Aboluo Tools Co.  Ltd.  Lishui 321404  China 4. China National Erzhong Group Wanhang Die Forging Co.  Ltd.  Deyang 618000  China 
KeyWords: abnormality detection  press  hydraulic pump  multi-signal fusion  convolutional neural network 
ClassificationCode:TH165.3
year,vol(issue):pagenumber:2025,50(5):219-225
Abstract:

For the dispersion and fuzziness of abnormal characteristics of hydraulic pumps in large-scale die forging press, an abnormal monitoring method based on multi-signal fusion and convolutional neural networks was proposed. Firstly, a data processing method based on multi-signal fusion was proposed, and the time series signals for different types of sensors were converted into multi-channel feature maps by calculating the autocorrelation coefficients (ACF) of time series data from each channel, which effectively combined the features between each fault. Then, based on the feature maps, a convolutional neural network was constructed and improved to learn the health status of the device, which was used to predict the correlation of future key indicator parameters. Finally, the abnormal score was calculated by using the Fast Fourier Transform (FFT), and an adaptive error measurement method was proposed to detect the abnormal data of hydraulic pumps. Experimental analysis results show that the proposed method can effectively achieve the abnormal monitoring of the hydraulic pumps in large-scale die forging press.

Funds:
国家重点研发计划项目(2022YFB3706904)
AuthorIntro:
作者简介:袁超(1992-),男,博士,高级工程师,E-mail:804785930@qq.com;通信作者:张浩(1963-),男,硕士,正高级工程师,E-mail:zh_hao@sina.com
Reference:


[1]袁超,张浩,凌云汉,等.基于小波变换和S-G滤波的多尺度平滑预处理方法
[J].锻压技术,2023,48(6):140-155.


 

Yuan C, Zhang H, Ling Y H, et al. Multiscale smoothing preprocessing method based on wavelet transform and S-G filtering
[J]. Forging & Stamping Technology, 2023, 48(6):140-155.

 


[2]王少萍, 苑中魁, 杨光琴. 液压泵信息融合故障诊断
[J]. 中国机械工程, 2005(4): 47-51. 

 

Wang S P, Yuan Z K, Yang G Q. Study on fault diagnosis of data fussion in hydraulic pump
[J]. China Mechanical Engineering, 2005(4): 47-51.

 


[3]宋大伟, 高长乐. 压力机常见故障及解决对策分析
[J]. 锻造与冲压, 2024(18): 71-74.

 

Song D W, Gao C L. Analysis of the usual faults and its solutions for press
[J]. Forging & Metalforming, 2024(18): 71-74.

 


[4]Martínez-Heras J A, Donati A. Enhanced telemetry monitoring with novelty detection
[J]. AI Magazine, 2014, 35(4): 37-46.

 


[5]Gao Y, Yang T H, Xu M Q, et al. An unsupervised anomaly detection approach for spacecraft based on normal behavior clustering
[A]. 2012 Fifth International Conference on Intelligent Computation Technology and Automation
[C]. Zhangjiajie:IEEE, 2012.

 


[6]Iverson D L. Inductive system health monitoring
[A]International Conference on Artificial Intelligence
[C]. Las Vegas,2004.

 


[7]Li K, Wu Y L, Song S M, et al. A novel method for spacecraft electrical fault detection based on FCM clustering and WPSVM classification with PCA feature extraction
[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(1): 98-108.

 


[8]Bay S D, Schwabacher M. Mining distance-based outliers in near linear time with randomization and a simple pruning rule
[A]. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
[C]. New York: Association for Computing Machinery, 2003.

 


[9]Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers
[A]. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
[C]. New York: Association for Computing Machinery, 2000.

 


[10]Kriegel H P, Krger P, Schubert E, et al. LoOP: Local outlier probabilities
[A]. Proceedings of the 18th ACM Conference on Information and Knowledge Management
[C]. New York: Association for Computing Machinery, 2009.

 


[11]Liu F T, Ting K M, Zhou Z H. Isolation forest
[A]. 2008 Eighth IEEE International Conference on Data Mining
[C]. Pisa: IEEE, 2008.

 


[12]张韩旭,方刚.人工神经网络在金属塑性本构建模中的应用
[J]. 锻压技术,2024,49(7):1-18.

 

Zhang H X,Fang G. Application of artificial neural networks in metal plasticity constitutive modeling.
[J]. Forging & Stamping Technology, 2024, 49(7):1-8.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com