Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Mesoscale rolling deformation of 304 stainless steel foil with different grain orientations
Authors: Yang Yayu1 2 3  Fan Wanwan1 2 3  Liu Hongyan1 2 3  Wang Bingchao1 2 3  Wang Tao1 2 3  He Dongping1 2 3 
Unit: 1.College of Mechanical Engineering  Taiyuan University of Technology Taiyuan 030024  China  2.Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment of Ministry of Education  Taiyuan University of Technology  Taiyuan 030024  China  3.National Key Laboratory of Metal Forming Technology and Heavy Equipment  Taiyuan University of Technology  Taiyuan 030024  China 
KeyWords: 304 stainless steel foil  texture orientation  mesoscale  rolling deformation  dislocation slip crystal plasticity finite element 
ClassificationCode:TG33
year,vol(issue):pagenumber:2025,50(5):188-196
Abstract:

The rolling finite element model of 304 stainless steel foil was established by crystal plasticity finite element method. The accuracy of the rolling model was verified by comparing the measured grain orientation of foil with the simulation results. Based on the above model, the effects of five typical texture orientations and random orientation on the rolling force, contact pressure, micro-uneven deformation and motion state of slip system for rolled 304 stainless steel foil were analyzed. The results show that the contact pressure and rolling force in the model rolling process of the are significantly affected by the grain orientation. The effects of front and back tension in the rolling deformation for the models with different grain orientations are different. The models dominated by Brass, Cube and Goss orientations  can produce a certain plastic deformation in advance and reduce the rolling force required for rolling deformation under the action of appropriate front and back tension. The anisotropy of the random orientation model is significant, and its uneven dislocation slip can easily lead to localization phenomenon at the surface of foil. In contrast, the typical texture orientation models have more shear bands and a more uniform dislocation slip deformation distribution, resulting in better surface quality of the rolled product.

Funds:
国家自然科学基金区域联合重点项目(U22A20188);国家杰出青年基金项目(52425504);金属成形技术与重型装备全国重点实验室开放课题(B2408100.W13);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2024HA-TYUTKFYF011)
AuthorIntro:
作者简介:杨亚玉(2000-),女,硕士研究生,E-mail:yangyayu2025@163.com;通信作者:范婉婉(1995-),女,博士,讲师,E-mail:fanwanwan@tyut.edu.cn
Reference:


[1]严子力. 晶体取向及取向差对高温镍基合金疲劳行为的晶体塑性模拟研究
[D]. 南昌: 南昌大学, 2024.


 

Yan Z L. Crystal Plasticity Simulation Study on the Influence of Crystal Orientation and Misorientation on Fatigue Behavior of High-temperature Nickel-based Alloys
[D]. Nanchang: Nanchang University, 2024.

 


[2]Wang J, Jiang W. Numerical assessment on fatigue damage evolution of materials at crack tip of CT specimen based on CPFEM
[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102687.

 


[3]周胜. 含缺陷梯度晶粒结构镍基合金的晶体塑性有限元模拟
[D]. 株洲: 湖南工业大学, 2024.

 

Zhou S. Simulation Study of Gradient Grain Size Structure Nickel-based Alloy with Flaw by Crystal Plasticity Finite Element Modeling
[D]. Zhuzhou: Hunan University of Technology, 2024.

 


[4]Chen G, Huo Y M, Lin J G, et al. Crystal plasticity finite element method investigation of normal tensile deformation anisotropy in rolled pure titanium sheet
[J]. Thin-Walled Structures, 2024, 200: 111904.

 


[5]Nijhuis B, Perdahcogˇlu E S, Boogaard A H. A robust and efficient rate-independent crystal plasticity model based on successive one-dimensional solution steps
[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 438: 117815.

 


[6]Su H, Wang J S, Liu C, et al. Orientation dependence of intracrystalline and grain boundary deformation behavior in Mg-2Y using nanoindentation and CPFEM
[J]. Journal of Alloys and Compounds, 2024, 994: 174688.

 


[7]Tong X, Li Y, Fu M W. Modelling of grain size effects in progressive microforming using CPFEM
[J]. International Journal of Mechanical Sciences, 2024, 267: 108971.

 


[8]Wessel A, Perdahcogˇlu E S, Boogaard T, et al. Incorporating precipitation-related effects on plastic anisotropy of age-hardenable aluminium alloys into crystal plasticity constitutive models
[J]. Materials Science and Engineering: A, 2025, 924: 147714.

 


[9]Lai R P, Zhao J F, Lei L M, et al. Revealing the tensile anisotropic mechanisms of additive manufactured IN718 alloy based on crystal plasticity modeling
[J]. Computational Materials Science, 2025, 251: 113735.

 


[10]Zhang Z, Shen F, Ke L L. A dislocation density-based crystal plasticity damage model for rolling contact fatigue of gradient grained structures
[J]. International Journal of Fatigue, 2024, 179: 108038.

 


[11]Long X, Chong K N, Su Y T, et al. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method
[J]. International Journal of Fatigue, 2023, 175: 107778.

 


[12]Chen B, Hamada S, Li W J, et al. Crystal plasticity FEM study of material and mechanical effects on damage accumulation mode of fatigue crack propagation
[J]. International Journal of Fatigue, 2023, 173: 107683.

 


[13]Chalapathi D, Sivaprasad P V, Kanjarla A K. A crystal plasticity investigation on the influence of orientation relationships on texture evolution during rolling in fcc/bcc two phase materials
[J]. Materials Today Communications, 2022, 31: 103300.

 


[14]Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling
[J]. International Journal of Plasticity, 2020, 125(2): 133-149.

 


[15]Asadkandi H M, Mánik T, Holmedal B, et al. Open-source implementations and comparison of explicit and implicit crystal-plasticity finite element methods
[J]. Computers and Structures, 2025, 307: 107621.

 


[16]任忠凯, 郭雄伟, 范婉婉, 等. 精密极薄带轧制理论研究进展及展望
[J]. 机械工程学报, 2020, 56(12): 73-84.

 

Ren Z K, Guo X W, Fan W W, et al. Research progress and prospects of precision ultra-thin strip rolling theory
[J]. Journal of Mechanical Engineering, 2020, 56(12): 73-84.

 


[17]Wang K, Hu Y F. Study on fracture toughness of ultra-thin stainless steel foils
[J]. Journal of Physics: Conference Series, 2024, 2827(181): 012035.

 


[18]Li L, Qi Y Y, M X G, et al. A study of the formability of stainless steel foils during micro deep drawing
[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1270(60): 012030.

 


[19]王天翔, 高祥明, 赵永顺, 等. 张力作用下304不锈钢箔材的轧制变形模拟
[J]. 塑性工程学报, 2021, 28(3): 164-170.

 

Wang T X, Gao X M, Zhao Y S, et al. Simulation on rolling deformation of 304 stainless steel foil under tension
[J]. Journal of Plasticity Engineering, 2021, 28(3): 164-170.

 


[20]Liu X, Xiao H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling
[J]. Journal of Materials Processing Technology, 2020, 278(4): 116537.

 


[21]Hu L, Jiang S Y, Zhang Y Q, et al. Texture evolution and inhomogeneous deformation of polycrystalline Cu based on crystal plasticity finite element method and particle swarm optimization algorithm
[J]. Journal of Central South University, 2017, 24(12): 2747-2756.

 


[22]周新亮, 万本振. 基于晶体塑性有限元的AZ31镁合金室温变形过程织构及孪生演化
[J]. 锻压技术, 2024, 49(1): 228-235.

 

Zhou X L, Wang B Z. Texture and twinning evolution for AZ31 magnesium alloy during room temperature deformation process based on crystal plasticity finite element
[J]. Forging & Stamping Technology, 2024, 49(1): 228-235.

 


[23]Wang H Z, Yang P, Jiang W N, et al. Crystal plasticity finite element study on the microstructure and orientations evolution of {100} columnar grains in electrical steels
[J]. Materials Today Communications, 2024, 40(3): 109678.

 


[24]Zhou X Y, Zan S S, Zeng Y F, et al. Comprehensive study of plastic deformation mechanism of polycrystalline copper using crystal plasticity finite element
[J]. Journal of Materials Research and Technology, 2024, 30:(3) 9221-9236.

 


[25]Pi H C, Han J T, Zhang C G, et al. Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM
[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(1): 43-47.

 


[26]Schmid E. Plastic of Crystals
[M]. New York: Oxford University Press, 1935.

 


[27]Bassani J L, Wu T Y. Latent hardening in single crystals. II. Analytical characterization and predictions
[J]. Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences, 1991, 435(1893): 21-41.

 


[28]Fan W W, Wang T, Hou J, et al. Calibration of 304 stainless steel strip parameters based on CPRVE model
[J]. Journal of Plastic Engineering, 2019, 26(4): 268-273.

 


[29]Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook
[M]. Cambridge, MA: MIT Press, 1970.

 


[30]陈守东. 基于晶体塑性有限元的铜极薄带轧制过程模拟研究
[D]. 沈阳: 东北大学, 2016.

 

Chen S D. Numerical Simulation on Copper Foil Rolling Process Based on Crystal Plasticity FEM
[D]. Shenyang: Northeastern University, 2016.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com