Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Finite element analysis of crystal plasticity in cold rolled deformation for austenitic stainless steel foil
Authors: Pang Rufa Qiu Chunlin 
Unit: State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China 
KeyWords: stainless steel foil  crystal plasticity finite element  thickness  grain orientation  cold rolling 
ClassificationCode:TG142
year,vol(issue):pagenumber:2025,50(5):180-187
Abstract:

Ultra-thin precision stainless steel foil, namely, ultra-thin strip, is widely used in high-end engineering fields such as electronics, aerospace, automotive and chemical industries. Therefore, based on the size effect and anisotropy of micrometer precision austenitic stainless steel foil in cold rolling, the rolling process was studied by using the crystal plastic finite element method, and the influences of different thicknesses and initial grain orientations on the plastic deformation of foil were analyzed. The results indicate that the stress concentration during the rolling process is mainly distributed at grain boundaries between the grains. With the increasing of foil thickness, the rolling force increases significantly, the stress and strain distributions gradually tend to be uniform, and the stress distribution of the single-layer crystal is also relatively uniform; the smaller the foil thickness, the more significant the strain gradient within the grain, and the strain band after rolling tends to the rolling direction. The influence of random initial orientation on the rolling force and rolling stability is relatively small. Single grains with different random initial orientations show great differences in stress and strain distribution, and their final grain morphologies are also different, although the differences are minor, and the grains are all elongated along the rolling direction.

Funds:
AuthorIntro:
作者简介:庞如法(1998-),男,硕士研究生,E-mail:pangrufa@163.com;通信作者:邱春林(1964-),男,硕士,副教授,E-mail:qiucl@ral.neu.edu.cn
Reference:


[1]张倩, 周红霞. 太钢“手撕钢”: 打造中国创造新标杆
[J]. 前进, 2022(7): 40-42.


 

Zhang Q, Zhou H X. TISCO′s “hand-torn steel”: Creating a new benchmark for China′s creativity
[J]. Advance, 2022(7): 40-42.

 


[2]张希杰,余斌,刘羽飞,等.轧制及退火工艺对C5100铜带材组织性能的影响
[J].铜业工程,2023(2):114-121.

 

Zhang X J, Yu B, Liu Y F, et al. Microstructure and properties of C5100 copper strip with different rolling and annealing processes
[J]. Copper Engineering, 2023(2): 114-121.

 


[3]Wojciech P. Crystal plasticity
[J]. Crystals, 2021,11(1): 44.

 


[4]章海明, 徐帅, 李倩, 等. 晶体塑性理论及模拟研究进展
[J]. 塑性工程学报, 2020,27(5): 12-32.

 

Zhang H M, Xu S, Li Q, et al. Progress of crystal plasticity theory and simulations
[J]. Journal of Plasticity Engineering, 2020,27(5): 12-32.

 


[5]Taylor G I. The mechanism of plastic deformation of crystals. Part I. Theoretical
[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1934,145(855): 362-387.

 


[6]Schmid E. Yield point of a crystals, critical shear stress law
[A]. Proceedings of the First International Congress for Applied Mechanics
[C]. Delft, 1924.

 


[7]Hill R J, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain
[J]. Journal of the Mechanics and Physics of Solids, 1972,20(6): 401-413.

 


[8]Peirce D, Asaro R J. An analysis of nonuniform and localized deformation in ductile single crystals
[J]. Acta Metallurgica, 1982,30(6): 1087-1119.

 


[9]Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids
[J]. Acta Metallurgica, 1976,31(12): 1951-1976.

 


[10]Rice J R. Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity
[J]. Jouranl of the Mechanics and Physics of Solids, 1971,19(6): 433-455.

 


[11]刘相华, 赵启林, 孙祥坤, 等. 极薄带微轧制技术研究与应用新进展
[J]. 轧钢, 2018,35(1): 1-5.

 

Liu X H, Zhao Q L, Sun X K, et al. Prospect of micro rolling technologies for foil products
[J]. Steel Rolling, 2018,35(1): 1-5.

 


[12]陈守东. 基于晶体塑性有限元的铜极薄带轧制过程模拟研究
[D]. 沈阳: 东北大学, 2016.

 

Chen S D. Simulation Study of Rolling Process of Copper Very Thin Strip Based on Crystal Plasticity Finite Element
[D]. Shenyang: Northeastern University, 2016.

 


[13]Si L Y, Lu C, Liu X H, et al. Modeling of heterogeneous tensile deformation of polycrystalline aluminum
[J]. Steel Research International, 2008,79(2):677-683.

 


[14]刘相华, 赵启林, 陈守东. 极薄带轧制过程的晶体塑性有限元分析
[J]. 轧钢, 2018,35(5):1-5.

 

Liu X H, Zhao Q L, Chen S D. Foil rolling process analyzed by crystal plasticity finite element method
[J]. Steel Rolling, 2018,35(5):1-5.

 


[15]朱远志, 张雅峰, 王适之, 等. 不锈钢箔材的轧制
[A]. 2014年全国钢材深加工研讨会论文集
[C]. 北京,2014.

 

Zhu Y Z, Zhang Y F, Wang S Z, et al. Rolling of stainless steel foils
[A]. Proceedings of the 2014 National Symposium on Deep Steel Processing
[C]. Beijing,2014.

 


[16]王天翔, 高祥明, 赵永顺, 等. 张力作用下304不锈钢箔材的轧制变形模拟
[J]. 塑性工程学报, 2021,28(3):164-170.

 

Wang T X, Gao X M, Zhao Y S, et al. Simulation on rolling deformation of 304 stainless steel foil under tension
[J].Journal of Plasticity Engineering, 2021,28(3):164-170.

 


[17]刘秀, 金霞, 楼航飞, 等. 304不锈钢箔材在不同应变速率下的拉伸性能研究
[J]. 材料科学与工艺, 2019,27(5):59-65.

 

Liu X, Jin X, Lou H F, et al. Studies on the tensile properties of 304 stainless steel foil at different strain rates
[J]. Materials Science and Technology, 2019,27(5):59-65.

 


[18]朱远志, 范伟龙, 刘冉, 等. 金属箔材轧制过程中第二相颗粒的尺寸效应研究
[J]. 华中师范大学学报(自然科学版), 2017,51(6):791-795.

 

Zhu Y Z, Fan W L, Liu R, et al. The size effect of different types of secondary particles in metallic foils during its foil rolling process
[J]. Journal of Central China Normal University(Natural Sciences), 2017,51(6):791-795.

 


[19]李明星. SUS304不锈钢箔微冲裁尺寸效应研究
[D]. 哈尔滨: 哈尔滨工业大学, 2011.

 

Li M X. Study of Dimensional Effects of Microblanking on SUS304 Stainless Steel Foils
[D]. Harbin: Harbin Institute of Technology, 2011.

 


[20]Lee E H. Elastic-plastic deformation at finite strains
[J]. Journal of Applied Mechanics, 1969, 36(1): 1-6.

 


[21]Lu J, Becker A, Sun W, et al. Simulation of cyclic plastic behavior of 304L steel using the crystal plasticity finite element method
[J]. Procedia Materials Science, 2014, 3: 135-140.

 


[22]Le Pécheur A, Curtit F, Clavel M, et al. Polycrystal modelling of fatigue: Pre-hardening and surface roughness effects on damage initiation for 304L stainless steel
[J]. International Journal of Fatigue, 2012, 45: 48-60.

 


[23]范婉婉. 304不锈钢极薄带轧制变形区细观力学行为研究
[D]. 太原: 太原理工大学, 2020.

 

Fan W W. 304 Stainless Steel Very Thin Strip Rolling Deformation Zone Fine Mechanical Behavior Research
[D]. Taiyuan: Taiyuan University of Technology, 2020.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com