Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation of extrusion forming for 300M steel landing gear actuator
Authors: Li Bo1  Han Wen1  Han Shun2  Liu Nan3  Wang Jianguo3  Li Yong2  Wang Chunxu2  Zhang Xinquan1 
Unit: 1. AVIC The First Aircraft Institute  Xi′an 710089  China  2. Institute of Special Steels  Central Iron and Steel Research Institute Co.  Ltd.  Beijing 100081  China  3. School of Materials Science and Engineering  Northwest Polytechnical University  Xi′an 710072  China 
KeyWords: landing gear actuator  300M steel  backward extrusion  extrusion temperature  extrusion rate 
ClassificationCode:TG376.2
year,vol(issue):pagenumber:2025,50(5):165-172
Abstract:

For the problems of large forming load, low material utilization rate and long production cycle in the traditional manufacturing process of aircraft landing gear, the backward extrusion process was proposed to manufacture 300M steel landing gear actuator, and the backward extrusion die and blank shape were designed. Then, the finite element simulation was carried out by Deform-3D, and the change laws of temperature, equivalent strain and extrusion force during the extrusion process were analyzed at the extrusion temperature of 1050-1150 ℃ and the extrusion rate of 30-120 mm·s-1. The results show that with the increasing of extrusion temperature or extrusion rate, the temperature of forgings shows an upward trend, but the temperature distribution law remains basically unchanged. The extrusion force in the early stage of forgings extrusion decreases with the increasing of extrusion temperature, and the difference of extrusion force in the later stage is not significant. The initial extrusion load at high extrusion rate is larger, but the curve is more stable. When the extrusion temperature is 1050 ℃ and the extrusion rate is 120 mm·s-1, the extrusion load is basically stable at 6.0×106 N. The average strain differences under different extrusion temperatures and extrusion rates are 4.55% and 3.41%, respectively, and the differences in the proportion and distribution law of equivalent strain amounts are very small. Comprehensive analysis shows that the best process parameters combination obtained is the extrusion temperature of 1130 ℃ and the extrusion rate of 30-50 mm·s-1.

Funds:
国家重点研发计划(2022YFB3705200)
AuthorIntro:
作者简介:李波(1981-),女,硕士,高级工程师,E-mail:372707201@qq.com;通信作者:韩顺(1987-),男,博士,正高级工程师,E-mail:hanshunfa@126.com
Reference:


[1]陈永新. 飞机起落架系统简介
[J]. 大众科技,2014,16(6): 127-128,130.


 

Chen Y X. Introduction to aircraft landing gear system
[J]. Popular Science & Technology, 2014, 16(6): 127-128,130.

 


[2]Armaan A, Keshav S, Srinivas G. A step towards safety: Material failure analysis of landing gear
[J]. Materials Today: Proceedings, 2020.

 


[3]赵博, 许广兴, 贺飞, 等. 飞机起落架用超高强度钢应用现状及展望
[J]. 航空材料学报,2017,37(6): 1-6.

 

Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear
[J]. Journal of Aeronautical Materials, 2017, 37(6): 1-6.

 


[4]杨欢. 300M钢高温变形行为及模锻成形工艺研究
[D]. 秦皇岛: 燕山大学,2021.

 

Yang H. Study on High Temperature Deformation Behavior and Die Forging Process of 300M Steel
[D]. Qinhuangdao: Yanshan University, 2021.

 


[5]黄顺喆, 厉勇, 王春旭, 等. 300M钢的热变形行为研究
[J]. 热加工工艺, 2010, 39(20): 25-28.

 

Huang S Z, Li Y, Wang C X, et al. Investigation on hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39(20): 25-28.

 


[6]张海成, 昌春艳, 曾德涛, 等. 基于摩擦修正的单真空300M超高强度钢本构模型
[J]. 锻压技术, 2023, 48(6): 245-252.

 

Zhang H C, Chang C Y, Zeng D T, et al. Constitutive model on single vacuum 300M ultra-high strength steel based on friction correction
[J]. Forging & Stamping Technology, 2023, 48(6): 245-252.

 


[7]杨昭明,罗小安. 先进工艺在飞机起落架制造中的应用
[J]. 航空制造技术,2005(6): 100-103.

 

Yang Z M, Luo X A. Application of advanced manufacturing technology in aircraft undercarriage production
[J]. Aeronautical Manufacturing Technology, 2005(6): 100-103.

 


[8]曾凡昌. 锻压先进制造技术及在航空工业领域的应用
[J]. 航空制造技术,2009(6): 26-29.

 

Zeng F C. Advanced forging manufacturing technology and its application in aviation industry
[J]. Aeronautical Manufacturing Technology, 2009(6): 26-29.

 


[9]李春刚, 孟清河. 起落架大型结构件深孔加工技术研究
[J]. 机械制造与自动化,2015,44(2): 68-70,89.

 

Li C G, Meng Q H. Study of deep hole machining technology for landing gear large structural parts
[J]. Machine Building & Automation, 2015, 44(2): 68-70,89.

 


[10]李铭. 大型飞机起落架制造技术
[J]. 航空制造技术,2008(21): 68-71.

 

Li M. Manufacturing technology for large aircraft undercarriage
[J]. Aeronautical Manufacturing Technology, 2008(21): 68-71.

 


[11]孙艳坤,张威. 民机起落架用材料的发展与研究现状
[J]. 热加工工艺,2018,47(20): 22-24,29.

 

Sun Y K, Zhang W. Development and research status of materials used for landing gear of civil aircraft
[J]. Hot Working Technology, 2018, 47(20): 22-24,29.

 


[12]张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状
[J]. 哈尔滨理工大学学报,2011,16(6): 73-76.

 

Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra high strength steel and research
[J]. Journal of Harbin University of Science and Technology, 2011, 16(6): 73-76.

 


[13]赵明杰,邓磊,孙朝远,等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展
[J]. 科学通报,2022,67(11): 1036-1053.

 

Zhao M J, Deng L, Sun C Y, et al. Advances on the deformation mechanism and forging technology of 300M high-strength steel heavy components in the whole forging process
[J]. Chinese Science Bulletin, 2022,67(11): 1036-1053.

 


[14]祁荣胜,景阳端,刘鑫刚,等. 300M高强钢热变形行为及其热加工图
[J]. 塑性工程学报,2016,23(2): 130-135.

 

Qi R S, Jing Y R, Liu X G, et al. Hot deformation behavior and hot processing map for 300M high strength steel
[J]. Journal of Plasticity Engineering, 2016, 23(2): 130-135.

 


[15]唐华. 超高强度钢40CrNi2Si2MoVA强韧化工艺研究
[D]. 成都: 西南交通大学, 2006.

 

Tang H. The Study on Process of Improving Strength and Toughness of 40CrNi2Si2MoVA Steel
[D]. Chengdu: Southwest Jiaotong University, 2006.

 


[16]许忠智, 韩顺, 韩文, 等. 铸态300M钢双锥试样热压缩行为
[J]. 锻压技术, 2023, 48(11): 232-237.

 

Xu Z Z, Han S, Han W, et al. Thermal compression behaviors of as-cast 300M steel biconcal specimen
[J]. Forging & Stamping Technology, 2023, 48(11): 232-237.

 


[17]郭鹏.300M钢热变形和热处理过程中微观组织演化和力学性能优化研究
[D].武汉:华中科技大学,2023.

 

Guo P. Research on Microstructure Evolution and Mechanical Properties Optimization of 300M Steel During Hot Deformation and Heat Treatment
[D].Wuhan: Huazhong University of Science and Technology, 2023.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com