Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure and mechanical properties of forged high-strength magnesium alloy Mg-9Gd-5.5Y-2Zn-0.6Mn for automobile
Authors: Dong Yanxiao1 Wu Yimin2 
Unit: 1.Department of Automotive Engineering  Hebei Jiaotong Vocational and Technical College  Shijiazhuang 050035  China  2.School of Mechanical Engineering  Hebei University of Technology Tianjin 300401  China 
KeyWords: high-strength magnesium alloy  forging process parameters  parameter optimization  microstructure  mechanical property 
ClassificationCode:TH164
year,vol(issue):pagenumber:2025,50(5):40-46
Abstract:

The initial forging temperature, final forging temperature, heating temperature, holding time, forging force, forging speed and forging times of high-strength magnesium alloy Mg-9Gd-5.5Y-2Zn-0.6Mn specimens for automobile were adjusted and optimized. The initial forging temperature is increased from 430 ℃ to 450 ℃, the final forging temperature is decreased from 360 ℃ to 330 ℃, the heating temperature is increased from 430 ℃ to 450 ℃, the holding time is extended from 30 min to 40 min, the forging force is reduced from 680 kN to 630 kN, the forging speed is increased from 20 mm·min-1 to 25 mm·min-1, and the forging times are increased from 1 to 2 times, and the microstructure and mechanical properties of the alloy specimens before and after the optimization of forging process parameters were tested and compared. The results show that the microstructure of high-strength magnesium alloy Mg-9Gd-5.5Y-2Zn-0.6Mn specimen is significantly refined after optimizing the process parameters, and the elongation after fracture of the alloy specimen is 7.1%, which is basically unchanged compared with that before the optimization. The tensile strength is 425 MPa, and the yield strength is 342 MPa, which are increased by 37 MPa and 32 MPa, respectively, compared to those before the optimization.

Funds:
河北省“三三三人才工程”资助项目(C20221036)
AuthorIntro:
作者简介:董彦晓(1990-),女,硕士,讲师,E-mail:dpdongyanxiao@163.com
Reference:

 
[1]王兵,刘飞,胡婉婷,等. 超高强韧稀土镁合金直筒段锻造成形工艺
[J]. 宇航材料工艺,2023,53(3):82-86.


 

Wang B, Liu F, Hu W T, et al. Forging process of ultra-high strength and toughness rare earth magnesium alloy in straight tube section
[J]. Aerospace Materials & Technology, 2023,53 (3): 82-86.

 


[2]王俊升,薛程鹏,王硕,等. 轻质金属的发展和应用:高强铝合金和镁合金
[J]. 特种铸造及有色合金,2023,43(2):145-152.

 

Wang J S, Xue C P, Wang S,et al. The development and application of lightweight metals: High-strength aluminum alloys and magnesium alloys
[J]. Special Casting & Nonferrous Alloys, 2023,43 (2): 145-152.

 


[3]李旻昊,卢立伟,张家龙,等. 镁合金锻压-弯曲反复变形的有限元数值模拟分析与实验研究
[J]. 锻压技术, 2023, 48(2): 52-61.

 

Li M H, Lu L W, Zhang J L, et al. Finite element numerical simulation analysis and experimental research on forging-bending repeated deformation of magnesium alloys
[J]. Forging & Stamping Technology, 2023,48 (2): 52-61.

 


[4]王继晨,刘飞,鲍益东,等. 基于无网格法的镁合金等温锻造成形模拟分析
[J]. 锻压技术,2023,48(2):10-15.

 

Wang J C, Liu F, Bao Y D, et al. Simulation analysis on isothermal forging for magnesium alloy based onmeshless method
[J]. Forging & Stamping Technology, 2023,48 (2): 10-15.

 


[5]王智勇,王小刚,刘涛,等. 航空用ZK61M镁合金锻件成形工艺模拟及试验验证
[J]. 锻压装备与制造技术,2022, 57(5): 85-89.

 

Wang Z Y, Wang X G, Liu T, et al. Forming process simulation and experimental verification of ZK61M magnesium alloy forgings for aviation
[J]. China Metalforming Equipment & Manufacturing Technology, 2022, 57 (5): 85-89.

 


[6]Zhang K M, Qin C, She J, et al. Simultaneous improvement in strength and ductility of extruded Mg alloy via novel closed forging extrusion
[J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (9): 2866-2876.

 


[7]戚勇,姜一达. 锻压温度对挤锻复合成形AZ80-CeTi镁合金性能的影响
[J]. 热加工工艺,2022,51(3):112-114,121.

 

Qi Y, Jiang Y D. Effect of forging temperature on properties of AZ80-CeTi magnesium alloy by extrusion-forging composite forming
[J]. Hot Working Technology, 2022, 51 (3): 112-114,121.

 


[8]聂志诚,张欣,刘筱. 多向锻造变形和退火处理对AZ31镁合金微观组织和力学性能的影响
[J]. 矿冶工程,2021,41(6): 194-197.

 

Nie Z C, Zhang X, Liu X. Effect of multiple-forging and annealing on microstructure and mechanical properties of AZ31 magnesium alloy
[J]. Mining and Metallurgical Engineering, 2021, 41 (6): 194-197.

 


[9]聂焱,王祝堂. 镁合金的锻造工艺
[J]. 轻合金加工技术,2021,49(11):1-8.

 

Nie Y, Wang Z T. The forging process of Mg alloy
[J]. Light Alloy Fabrication Technology, 2021,49 (11): 1-8.

 


[10]宋杰.基于Dynaform的AZ91D镁合金盘体冲锻工艺优化
[J]. 热加工工艺,2021,50(7):89-91,96.

 

Song J. Optimization of stamping and forging process for AZ91D Mg alloy disc based on Dynaform
[J]. Hot Working Technology, 2021,50 (7): 89-91,96.

 


[11]王海彬,王智勇,赵盛荣. 锻造温度对ZK61M镁合金显微组织和力学性能的影响
[J]. 锻压装备与制造技术,2023, 58(2): 112-115,127.

 

Wang H B, Wang Z Y, Zhao S R. Effect of forging temperature on the micro-structure and mechanical properties of ZK61M magnesium alloy
[J]. Forging Equipment and Manufacturing Technology, 2023,58 (2): 112-115,127.

 


[12]罗航. Mg-9Gd-5.5Y-2Zn-0.6Mn高强镁合金非对称反挤压数值模拟及实验研究
[D]. 重庆:重庆大学,2022.

 

Luo H. Numerical Simulation and Experimental Study on Asymmetric Reverse Extrusion of Mg-9Gd-5.5Y-2Zn-0.6Mn High-strength Magnesium Alloy
[D]. Chongqing: Chongqing University, 2022.

 


[13]晏梓翔. 高强Mg-Gd系镁合金微观结构与力学性能研究
[D]. 安徽:中国科学技术大学,2022.

 

Yan Z X. Study on the Microstructure and Mechanical Properties of High-strength Mg-Gd Magnesium Alloys
[D]. Anhui: University of Science and Technology of China, 2022.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com