Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization on forging process parameters for 5Cr4Mo3VNb die steel
Authors: Zhu Yu1 Li Hao2 Shang Huichao3 
Unit: 1. Electromechanical Engineering Department Zhengzhou Vocational College of Industrial Safety Zhengzhou 451150 China 2. College of Mechanical and Electrical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 China 3. College of Intelligent Mechanical and Electrical Engineering  Zhongyuan University of Technology  Zhengzhou 450007 China 
KeyWords: forging process parameters  5Cr4Mo3VNb die steel  initial forging temperature  final forging temperature  forging ratio 
ClassificationCode:TH164
year,vol(issue):pagenumber:2025,50(5):31-39
Abstract:

 In order to optimize the forging process parameters of 5Cr4Mo3VNb die steel, the forging experiments of 5Cr4Mo3VNb die steel were conducted with different initial forging temperatures, final forging temperatures and forging ratios, and the microstructures and mechanical properties of the specimens under different process parameters were analyzed and tested. The results show that when the initial forging temperature increases from 1000 ℃ to 1080 ℃, the final forging temperature increases from 800 ℃ to 900 ℃, and the forging ratio increases from 2 to 10, the average grain size of 5Cr4Mo3VNb die steel specimens first decreases and then increases, and the strength first increases and then decreases. Compared with the specimen at the initial forging temperature of 1000 ℃, the average grain size of specimen is decreased by 40 μm, and the tensile strength and yield strength are increased by 114 and 107 MPa, respectively, when the initial forging temperature is 1060 ℃. Compared with the specimen at the final forging temperature of 800 ℃, the average grain size of specimen is decreased by 21 μm, while the tensile strength and yield strength are increased by 73 and 65 MPa, respectively, when the final forging temperature is 850 ℃. Compared with the specimen at the forging ratio of 2, the average grain size of specimen is decreased by 30 μm, while the tensile strength and yield strength are increased by 97 and 87 MPa, respectively, when the forging ratio is 8. Thus, the optimal initial forging temperature, final forging temperature and forging ratio of 5Cr4Mo3VNb die steel are 1060 ℃, 850 ℃ and 8, respectively.

Funds:
河南省自然科学基金资助项目(202110210301)
AuthorIntro:
作者简介:朱钰(1981-),女,学士,实验师,E-mail:Zhuyuzazy@163.com
Reference:

 
[1]周许,王石军,鄢磊,等. 汽车压铸用4Cr5Mo2V大型模具钢640 mm×1100 mm锻坯的研制
[J]. 特殊钢,2022,43(4):70-74.


 

Zhou X, Wang S J, Yan L, et al. Development and production of 4Cr5Mo2V large die steel 640 mm×1100 mm forged bloom for automobile die casting
[J]. Special Steel, 2022, 43 (4): 70-74.

 


[2]樊应剑,巴钧涛,康永斌. H13模具钢锻件超声检测缺陷分析
[J]. 大型铸锻件,2023(3):72-76.

 

Fan Y J, Ba J T, Kang Y B. Defect analysis of ultrasonic testing for H13 die steel forgings
[J]. Heavy Casting and Forging, 2023 (3): 72-76.

 


[3]王笑驰,左鹏鹏,吴晓春. SDP1塑料模具钢锻造过程组织演变的数值模拟
[J]. 锻压技术,2023,48(2):16-28.

 

Wang X C, Zuo P P, Wu X C. Numerical simulation of microstructure evolution during the forging process of SDP1 plastic mold steel
[J]. Forging & Stamping Technology, 2023,48 (2): 16-28.

 


[4]吴柏良,陈旋,钟雨轩,等. 锻造过程中大截面塑料模具钢中空洞缺陷的闭合行为
[J]. 上海金属,2021,43(2):105-113.

 

Wu B L, Chen X, Zhong Y X, et al. Closure behavior of void defects in large-section plastic mold steel during forging
[J]. Shanghai Metals, 2021,43 (2): 105-113.

 


[5]崔向红,王树奇,姜启川,等. 4Cr3Mo2NiV铸造热锻模具钢的高温磨损机理
[J]. 金属学报,2005,41(10):1116-1120.

 

Cui X H, Wang S Q, Jiang Q C, et al. High-temperature wear mechanism of cast hot-forging die steel 4Cr3Mo2NiV
[J]. Acta Metallurgica Sinica, 2005, 41 (10): 1116-1120.

 


[6]李小明. 渗硼工艺对汽车用45CrNiMoV热锻模具钢性能的影响
[J]. 特殊钢,2021,42(1):57-60.

 

Li X M. Influence of boronizing process on properties of hot forging die steel 45CrNiMoV for automobile
[J]. Special Steel, 2021,42 (1): 57-60. 

 


[7]张肖晓,陈旋,李晓成,等. 大截面SDP1塑料模具钢多向锻造过程中微观组织演变的数值研究
[J]. 上海金属,2020,42(2):57-62.

 

Zhang X X, Chen X, Li X C, et al. Numerical study on microstructure evolution of large cross-section SDP1 plastic die steel during multi-directional forging
[J]. Shanghai Metals, 2020,42 (2): 57-62.

 


[8]王树奇,崔向红,陈康敏,等. 精铸热锻模具钢的合金成分设计及其高温磨损性能研究
[J]. 摩擦学学报,2006,26(4):382-386.

 

Wang S Q, Cui X H, Chen K M, et al. Alloying design and high-temperature wear property of cast hot-forging die steel
[J]. Tribology, 2006,26 (4): 382-386.

 


[9]王树奇,崔向红,李俊义,等. 铸造热锻模具钢表面复合强化
[J]. 农业机械学报,2005,36(11):136-138.

 

Wang S Q, Cui X H, Li J Y, et al. Strengthening of cast hot-forging die steel by composited surface
[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36 (11): 136-138.

 


[10]崔向红,姜启川,王树奇,等. 精铸模具钢热锻模的应用及寿命的提高
[J]. 吉林大学学报(工学版),2005,35(6):567-571.

 

Cui X H, Jiang Q C, Wang S Q, et al. Application and improvement of service life of hot-forging dies prepared by cast steel
[J]. Journal of Jilin University(Engineering and Technology Edition), 2005, 35 (6): 567-571.

 


[11]李长生,韩亚辉,任津毅,等. 模具钢锻造过程等向性能的有限元预测
[J]. 模具工业,2020,46(2):1-7,13.

 

Li C S, Han Y H, Ren J Y, et al. Finite element prediction of isotropy of die steel in forging process
[J]. Die & Mould Industry, 2020,46 (2): 1-7,13.

 


[12]高枫,何仕荣,王涌纲,等. 直齿轮冷精锻钢坯卸压孔直径对模具弹性变形的影响
[J]. 锻压技术,2023,48(11):15-21.

 

Gao F, He S R, Wang Y G, et al. Influence of pressure relief hole diameter of cold precision forging steel billet for spur gear on elastic deformation of mold
[J]. Forging & Stamping Technology, 2023,48 (11): 15-21.

 


[13]殷铭,李强伟. 锻造工艺对含钒热作模具钢组织和性能的影响
[J]. 热加工工艺,2022,51(5):94-97,100.

 

Yin M, Li Q W. Effect of forging process on microstructure and properties of hot working die steel containing vanadium
[J]. Hot Working Technology,2022,51(5):94-97,100.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com