Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Multi-objective optimization on forging process parameters for hinge beam of cubic-anvil high pressure apparatus for diamond
Authors: Wang Xuemei1  Liu Feifei2 Wang Shuguang3  Wang Liangwen 2  Wang Ruolan4  Lu Haixia3  Xie Guizhong2 
Unit: 1. Zhengzhou Key Laboratory of Intelligent Assembly Manufacturing and Logistics Optimization  School of Intelligent Engineering  Zhengzhou College of Finance and Economics  Zhengzhou 450000  China  2. Henan International Joint Laboratory of Complex Mechanical Equipment Intelligent Monitoring and Control  College of Mechanical and Electrical Engineering  Zhengzhou University of Light Industry  Zhengzhou 450002  China 3. Henan Huanghe Whirlwind Co.  Ltd.  Changge 461500  China  4. International Education College  Zhengzhou University of Light Industry  Zhengzhou 450002  China 
KeyWords: hinge beam  cubic-anvil high pressure apparatus final forging extreme learning machine  grey correlation analysis  improved particle swarm optimization 
ClassificationCode:TG316.3
year,vol(issue):pagenumber:2025,50(5):13-30
Abstract:

In order to solve the problems of cracks and fracture easily appearing on the ears of hinge beams during the operation of cubic-anvil high pressure apparatus, and excessive tonnage of press required during the forging process of hinge beams, with the goal of reducing forging damage, forming load and stress peak during the forging process, the forging process parameters of hinge beam were optimized. The influences of each process parameter on forging damage, forming load and equivalent stress peak of forgings were obtained by using the range and variance analysis of orthogonal experiments, the three response objectives were converted into corresponding grey correlation degrees by combining grey correlation analysis with entropy weight method, and the agent model of process parameters and grey correlation degrees was established by extreme learning machine to develop a process parameter prediction system which could rapidly evaluate the advantages and disadvantages of the process parameters.Finally, based on the improved particle swarm algorithm within the feasible domain, the optimal process parameters were obtained. The results of relevant physical and chemical analysis show that the pore and inclusions in the finished cross-section of hinge beam and the microstructure at the maximum stress location meet the requirements. 

Funds:
国家自然科学基金资助项目(52475289,52075500);河南省揭榜挂帅重大科技项目(211110220200);河南省科技攻关项目(252102220009, 232102221033);河南省重大科技专项(231111231200)
AuthorIntro:
作者简介:王雪梅(1984-),女,学士,副教授,E-mail:15565050396@163.com ;通信作者:王良文(1963-),男,博士,教授,博士生导师,E-mail:w_liangwen@sina.com
Reference:

[1]邹文俊.中国超硬材料与制品的发展与思考
[J].超硬材料工程,2016,28(2):45-49.

 

Zou W J. Development and reflection of China′s superhard materials and products
[J]. Superhard Material Engineering, 2016,28 (2): 45-49.

 


[2]罗锡裕,徐燕军,刘一波.中国人造金刚石的发展及其关键技术的进步
[J].粉末冶金工业,2016,26(1):1-13.

 

Luo X Y, Xu Y J,Liu Y B. The development and key technological improvement of synthetic diamond in China
[J]. Powder Metallurgy Industry,2016,26(1):1-13.

 


[3]王良文,刘飞飞,武玺旺,等.铰链梁锻造模具飞边槽参数及锻造工艺参数的优化方法
[P].中国:CN116227181A,2023-06-06.

 

Wang L W, Liu F F, Wu X W, et al. Optimization method of flash groove parameters and forging process parameters of hinge beam forging mold
[P]. 

China: CN116227181A, 2023-06-06.

 


[4]汪曙光,陈治强,武玺旺,等.一种六面顶压机铰链梁的成型模具
[P]. 中国:CN215392284U,2022-01-04.

 

Wang S G, Chen Z Q, Wu X W, et al. A forming mold for the hinge beam of the hexahedral top diamond press
[P]. China: CN215392284U, 2022-01-04.

 


[5]刘金豪,沈国劬,孙嫘,等.铰链梁锻件的锻造工艺开发与批量化生产
[J].大型铸锻件,2020(2):11-13.

 

Liu J H, Shen G Q, Sun L,et al. Forging process development and mass production of hinge beam forgings
[J]. Heavy Casting and Forging, 2020(2):11-13.

 


[6]Xie G Z, Zhang S X, Wang L W, et al. Lightweight design of hinge beam based on Kriging agent model
[J]. Journal of Mechanical Science and Technology, 2022, 36(7): 3585-3595.

 


[7]Jia Y Y, Peng H M, Cao H J, et al. Parameter optimization in hot precision forging process of synchronizer ring based on grey relational analysis and response surface method
[J]. Materials Research Express, 2022, 9(4): 046517.

 


[8]Ji H C, Song G, Huang X M, et al. Precision hot forging forming experiment and numerical simulation of a railway wagon bogie adapter
[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1): 907-925.

 


[9]Obiko J O, Mwema F M, Shangwira H. Forging optimisation process using numerical simulation and Taguchi method
[J]. SN Applied sciences, 2020,2:713.

 


[10]Noorbakhsh M, Moradi H R. Design and optimization of multi-stage manufacturing process of stirling engine crankshaft
[J]. SN Applied Sciences, 2020,2:65.

 


[11]郭静,李明星.基于Deform-3D的汽车差速器壳体模锻工艺改进
[J].锻压技术,2023,48(4):38-47.

 

Guo J, Li M X. Improvement on die forging process for automobile differential housing based on Deform-3D
[J]. Forging & Stamping Technology, 2023,48(4):38-47.

 


[12]齐羿,薛喜云,焦斐,等.盘式转向节锻造工艺优化与过程模拟分析
[J].锻压技术,2023,48(9):32-40.

 

Qi Y, Xue X Y, Jiao F, et al. Forging process optimization and process simulation analysis on disc steering knuckle
[J]. Forging & Stamping Technology,2023,48(9):32-40.

 


[13]蔺永诚,陈明松.高性能大锻件控形控性理论及应用
[M].北京: 中国科技出版传媒股份有限公司,2013.

 

Lin Y C, Chen M S. Theory and Application of Shape Control of High-performance Large Forgings
[M].Beijing: China Science Publishing & Media Ltd., 2013.

 


[14]王岩,隋思涟.实验设计与MATLAB数据分析
[M].北京:清华大学出版社, 2012.

 

Wang Y,Sui S L. Experimental Design and MATLAB Data Analysis
[M]. Beijing: Tsinghua University Press, 2012.

 


[15]杜炎. 基于组合代理模型的某电动汽车车身多学科优化设计研究
[D].南昌:南昌大学, 2022.

 

Du Y. Research on Multidisciplinary Optimal Design of An Electric Vehicle Body Based on Combined Agent Model
[D]. Nanchang:Nanchang University, 2022.

 


[16]丁世林,黄海松,康佩栋,等.基于灰色关联分析的7050铝合金轮毂锻造工艺优化
[J].铸造技术,2018,39(5):1045-1049.

 

Ding S L, Huang H S, Kang P D, et al. Optimization of forging process of 7050 aluminum alloy wheel based on gray corre-lation analysis
[J]. Foundry Technology,2018,39(5):1045-1049.

 


[17]Ding S F, Xu X Z, Nie R. Extreme learning machine and its applications
[J]. Neural Computing and Applications, 2014, 25: 549-556.

 


[18]石青松, 徐红玉, 王晓强, 等. 基于 AMGA 与 IPSO 算法的 42CrMo 超声滚挤压工艺参数优化
[J]. 塑性工程学报, 2024, 31 (6):67-75. 

 

Shi Q S, Xu H Y, Wang X Q, et al. Optimization of 42CrMo ultrasonic rolling extrusion process parameters based on AMGA and IPSO algorithm
[J]. Journal of Plasticity Engineering, 2024, 31 (6): 67-75.

 


[19]GB/T 10561—2023,钢中非金属夹杂物含量的测定标准评级图显微检验法
[S].

 

GB/T 10561—2023,Determination of content of nonmetallic inclusions in steel—Micrographic method using standard diagrams
[S].
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com