Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure evolution and residual stress analysis on carbon steel/stainless steel composite plate
Authors: Xu Huiting Li Haibin Lyu Haibo Shuai Meirong Wang Qiang 
Unit: (Heavy Machinery Engineering Research Center of Education Ministry  Taiyuan University of Science and Technology   Taiyuan 030024  China) 
KeyWords: hot-rolled composite plate  microstructure  dislocation density  residual stress  grain size 
ClassificationCode:TG335.81
year,vol(issue):pagenumber:2025,50(4):117-124
Abstract:

 Abstract: Q235 carbon steel/304 stainless steel composite plate was prepared by vacuum hot-rolled process with the first pass reduction rate of 30% and the second pass reduction rate of 0%, 10%, 20% and 25%, respectively. Then, the average grain size, dislocation density and residual stress of microstructures for substrate and composite plates were calculated, and the relationship among them was discussed. The results show that with the increasing of reduction rate, the area of interfacial ferrite region decreases gradually, and the geometric necessary dislocation density of substrate and composite plates at the interface shows an increasing trend. When the reduction rate of second pass increases from 0% to 20%, the average grain size of substrate carbon steel (GC) increases, and the dislocation density caused by plastic deformation of carbon steel increases from 0.49×1014 to 0.8×1014 m-2. The residual stress increases from 48.77 to 243.83 MPa. When the reduction rate increases to 25%, the GC size decreases, the dislocation density decreases to 0.67×1014 m-2, and the residual stress is reduced to 33.89 MPa. As the reduction rate increases, the average grain size of composite plate stainless steel (GS) increases continuously, the dislocation density increases from 0.58×1014 to 1.02×1014 m-2, and the residual stress increases from 45.93 to 91.86 MPa. The study results provide a theoretical reference for the rolling process and microstucture control technology of this type of composite plate.

 
Funds:
基金项目:国家自然科学基金资助项目(51875382);山西省重点研发计划项目(202302150401003);太原市关键核心技术攻关“揭榜挂帅”项目(2024TYJB0114);太原科技大学研究生创新项目(SY2023022);晋城市重点研发计划(20230109);忻州市重点研发计划(20240103)
AuthorIntro:
作者简介:徐惠婷(1998-),女,硕士研究生
Reference:

 
[1]Hwang Y M, Tzou G Y. An analytical approach to asymmetrical cold-and hot-rolling of clad sheet using the slab method
[J]. Journal of Materials Processing Technology, 1996, 62(1-3): 249-259. 


 


[2]Liu B X, An Q, Yin F X, et al. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate
[J]. Journal of Materials Science, 2019, 54(17): 11357-11377.

 


[3]Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding
[J]. Materials Science and Engineering: A, 2016, 656: 130-141.

 


[4]Huang Q X, Yang X R, Ma L F, et al. Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling
[J]. Journal of Iron and Steel Research International, 2014, 21(10): 931-937.

 


[5]戴刚,陈科,刘元铭,等.预制波纹钢/铝复合板轧制工艺模拟与界面结合性能研究
[J].锻压技术,2024,49(1):114-123.

 

Dai G,Chen K,Liu Y M,et al.Research on rolling process simulation and interface bonding performance of prefabricated corrugated steel/aluminum composite plates
[J]. Forging & Stamping Technology,2024,49(1):114-123.

 


[6]黄郦,张明亚,李景辉,等. 热轧对304不锈钢/Q235碳钢复合板界面组织的影响
[J]. 材料热处理学报,2022,43(12):100-106.

 

Huang L, Zhang M Y, Li J H, et al. Effect of hot rolling on the interfacial structure of 304 stainless steel /Q235 carbon steel composite plate
[J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 100-106.

 


[7]李龙,张心金,刘会云,等. 不锈钢复合板的生产技术及工业应用
[J]. 轧钢,2013,30(3):43-47.

 

Li L, Zhang X J, Liu H Y, et al. Production technology and industrial application of stainless steel clad plate
[J]. Steel Rolling, 2013, 30(3): 43-47.

 


[8]田广民,李选明,赵永庆,等. 层状金属复合材料加工技术研究现状
[J]. 中国材料进展,2013,32(11):696-701.

 

Tian G M, Li X M, Zhao Y Q, et al. Research status of processing technology of layered metal composites
[J]. Materials China, 2013, 32(11): 696-701.

 


[9]任泉庄,黄峰,郭正洪. 中碳淬火-配分钢中的残余应力分布
[J]. 金属热处理,2016,41(10):1-5.

 

Ren Q Z, Huang F, Guo Z H. Residual stress distribution in medium carbon quenched steel
[J]. Heat Treatment of Metals,2016, 41(10): 1-5.

 


[10]Withers P J, Bhadeshia H. Residual stress. Part 1-Measurement techniques
[J]. Materials science and Technology, 2001, 17(4): 355-365.

 


[11]罗家豪,陈重毅,宿鹏吉,等. 降低冷轧取向硅钢残余应力和位错密度的磁-热耦合工艺
[J]. 金属热处理,2022,47(11):111-116.

 

Luo J H, Chen Z Y, Su P J, et al. Magnetic-thermal coupling process for reducing residual stress and dislocation density of cold-rolled oriented Silicon steel
[J]. Heat Treatment of Metals,2022, 47(11): 111-116.

 


[12]Borchers F, Kmmler J, Meyer H, et al. Influence of pre-machining on the surface integrity after processing by mechanical surface treatment
[J]. Procedia Cirp, 2018, 71: 453-459.

 


[13]GB/T 6394—2017,金属平均晶粒度测定方法
[S]. 

 

GB/T 6394—2017,Determination of estimating the average grain size of metal
[S]. 

 


[14]李海斌,黄庆学,周存龙,等. 热轧碳钢/不锈钢复合板结合界面碳钢的组织演变
[J]. 材料热处理学报, 2014, 35(4): 57-61.

 

Li H B, Huang Q X, Zhou C L, et al. Microstructure evolution of carbon steel at interface of carbon steel/stainless steel clad plate by hot rolling
[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 57-61.

 


[15]刘立彪,张计谋,徐琛,等. 液化气体汽车罐车用钢XGQ420DR的研制
[J]. 金属材料与冶金工程,2019,47(1):3-8.

 

Liu L B, Zhang J M, Xu C, et al. Development of steel XGQ420DR for liquefied gas automobile tank car
[J]. Metal Materials and Metallurgy Engineering, 2019, 47(1): 3-8.

 


[16]Xu X J, Song T, Fan Z, et al. Microstructure and dislocation strengthening of Sc microalloyed 2099 Al-Li alloy
[J]. Rare Metal Materials and Engineering, 2012, 41: 621-624.

 


[17]De Farias Soares A, Tatumi S H, Rocca R R, et al. Morphological and luminescent properties of HfO2 nanoparticles synthesized by precipitation method
[J]. Journal of Luminescence, 2020, 219: 116866.

 


[18]He J Y, Ma Y, Yan D S, et al. Improving ductility by increasing fraction of interfacial zone in low C steel/304 SS laminates
[J]. Materials Science and Engineering: A, 2018, 726: 288-297.

 


[19]Anand N, Chang K C, Yeh A C, et al. An efficient transient three-dimensional thermomechanical modeling of dynamic thermal stress building and releasing in a selective laser melting process
[J]. Journal of Materials Processing Technology, 2022, 309: 117741.

 


[20]Jiang G L, Wang J Y. Methods for stress measurement
[J]. Material Sciences, 2016, 6: 11-25.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com