Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization on warm extrusion process for TB6 titanium alloy charge liner based on class equipotential-field method
Authors: Guo Zhengfei1  Zhu Lihua1  Zhu Guangming1  Nie Lanqi2 Guan Yanjin3  Gao Shiyang4  Wang Liwei1 Zheng Hongyu1 
Unit: (1.School of Mechanical Engineering  Shandong University of Technology  Zibo 255000  China  2. Shandong Hongqi Mechanical &   Electrical Group Co.  Ltd.  Weifang 261108  China  3.Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials   (Ministry of Education)  Shandong University  Jinan 250061  China  4. Shandong Haoxin Machinery Co.  Ltd. Changyi 261307  China) 
KeyWords: charge liner  TB6 titanium alloy  warm extrusion  class equipotential-field method process design 
ClassificationCode:TG316
year,vol(issue):pagenumber:2025,50(4):86-96
Abstract:

 In order to achieve high-quality forming of the TB6 titanium alloy charge liner, a two-step warm extrusion process was proposed, and a numerical simulation optimization study of the process was conducted. Firstly, based on the high-temperature, high-strain rate constitutive equation and the recrystallization formula of TB6 titanium alloy, a finite element model of warm extrusion process for the charge liner was established using DEFORM-3D. The weighted total objective function with maximum equivalent stress, maximum forming force and grain refinement rate as the optimization goals was constructed. Additionally, using COMSOL, an electrostatic field model for the charge liner was established based on class equipotential-field method to select the optimal pre-extrusion shape. Then, parameters such as the friction factor, extrusion temperature and strain rate in the warm extrusion process were selected, and a three-factor and three-level orthogonal experiment was designed. The relationship between the weighted total objective and the process parameters was established for analysis. The results show that when the friction factor is 0.30, the extrusion temperature is 720 ℃, and the strain rate is 0.01 s-1, the maximum forming force is 241 kN, the maximum equivalent stress is 200 MPa and the grain refinement rate is 65%. The weighted total objective reaches its lowest value at this point, which is the optimal forming scheme.

 
Funds:
基金项目:国家重点研发计划(2022YFE0199100);山东省自然科学基金资助项目(ZR2020QE169);山东省精密制造与特种加工重点实验室开放课题
AuthorIntro:
作者简介:郭正飞(1998-),男,硕士研究生
Reference:

 
[1]叶海林, 李铭恩. 美国“印太战略”的调整与中国周边外交的因应
[J]. 拉丁美洲研究, 2023, 45(1): 28-49,153-154. 


 

Ye H L, Li M E. The adjustment of the U.S. indo-pacific strategy and the response of China′s neighborhood diplomacy
[J]. Latin American Studies, 2023, 45(1): 28-49,153-154.

 


[2]李良琦, 胡晓睿, 李晓红, 等. 2017年国外国防先进制造技术发展回顾
[J]. 国防制造技术, 2018 (1): 4-12. 

 

Li L Q, Hu X R, Li X H, et al. Review of foreign defense advanced manufacturing technology development in 2017
[J]. Defense Manufacturing Technology, 2018(1): 4-12.

 


[3]马建光, 张乃千. 日新月异的中国军事装备
[J]. 唯实, 2015 (3):87-90. 

 

Ma J G, Zhang N Q. China′s rapidly changing military equipment
[J]. Reality Only, 2015(3):87-90. 

 


[4]赵丽俊, 朱小平, 尹龙, 等. 不同材料药型罩破甲威力的数值模拟及试验研究
[J]. 兵器材料科学与工程, 2018, 41(1):89-92.

 

 Zhao L J, Zhu X P, Yin L, et al. Numerical simulation and experimental research of penetration power for different material shaped charge liners
[J]. Ordnance Material Science and Engineering, 2018,41(1):89-92.

 


[5]贾梦晔, 高永宏, 周鹏飞, 等. 药型罩材料与结构的研究进展
[J]. 兵器装备工程学报, 2022, 43(1): 10-18.

 

Jia M Y, Gao Y H, Zhou P F, et al. Research progress on materials and structures of pharmaceutical masks
[J]. Journal of Weapons and Equipment Engineering, 2022, 43(1): 10-18.

 


[6]赵腾, 罗虹, 贾万明, 等. 药型罩材料技术基本要素探讨
[J].兵器材料科学与工程, 2007,30(5):77-82.

 

Zhao T, Luo H, Jia W M, et al. Discussion on the basic elements of shaped charge liner material
[J]. Ordnance Material Science and Engineering, 2007,30(5):77-82. 

 


[7]Guo W Q,Liu J X,Li S K, et al. Microstructural evolution and deformation mechanism of the 80W-20Cu alloy at ultra-high strain rates under explosive loading
[J]. Materials Science and Engineering: A, 2013, 572:36-44.

 


[8]胡忠武, 李中奎, 张廷杰, 等. 药型罩材料的发展
[J]. 稀有金属材料与工程, 2004,33(10):1009-1012.

 

Hu Z W, Li Z K, Zhang T J, et al. Advanced progress in materials for shaped charge and explosively formed penetrator liners
[J]. Rare Metal Materials and Engineering,2004,33(10):1009-1012. 

 


[9]赵鑫, 徐永杰, 郑娜娜, 等. 药型罩侵彻性能仿真与优化
[J]. 兵器装备工程学报, 2021,42(10):65-71.

 

Zhao X, Xu Y J, Zheng N N, et al. Simulation and optimization research of penetration performance of liner
[J]. Journal of Ordnance Equipment Engineering,2021,42(10):65-71.

 


[10]冯可华, 杜宁, 章若晨, 等. 粉末冶金工艺钛合金材料对药型罩破甲性能的影响
[J]. 兵器装备工程学报, 2022, 43(8):112-116.

 

Feng K H, Du N, Zhang R C, et al. Discussion on penetration influence coefficient of shaped charge liner form titanium alloy in powder metallurgy technique
[J]. Journal of Ordnance Equipment Engineering,2022, 43(8):112-116. 

 


[11]Bao X, Chen W, Zhang J, et al. Achieving high strength-ductility synergy in a hierarchical structured metastable β-titanium alloy using through-transus forging
[J]. Journal of Materials Research and Technology, 2021, 11: 1622-1636.

 


[12]Su Y, Kong F T, You F H, et al. The high-temperature deformation behavior of a novel near-α titanium alloy and hot-forging based on the processing map
[J]. Vacuum, 2020, 173: 109-135.

 


[13]薛鑫莹, 景涛, 李国邓. 聚能装药钛合金药型罩研究
[J]. 弹箭与制导学报, 2012, 32(5): 83-86.

 

Xue X Y, Jing T, Li G D. Study on titanium alloy drug shield for polymerization charge
[J]. Journal of Missiles and Guidance, 2012, 32(5): 83-86.

 


[14]佟健博, 李雪飞, 李德, 等. 等温锻造TB6钛合金药型罩的组织与力学性能分析
[J]. 热加工工艺, 2021, 50(23): 99-102,106.

 

Tong J B, Li X F, Li D, et al. Microstructure and mechanical properties analysis of isothermal forging TB6 titanium alloy liner
[J]. Hot Working Technology, 2021, 50(23): 99-102,106.

 


[15]李落星,周佳,张辉.车身用铝、镁合金先进挤压成形技术及应用
[J].机械工程学报,2012,48(18):35-43.

 

Li L X, Zhou J, Zhang H. Advanced extrusion forming technology and application of aluminum and magnesium alloys for car body
[J]. Journal of Mechanical Engineering, 2012,48(18):35-43.

 


[16]贾万明, 张全孝, 白志国, 等. 药型罩制造技术的发展
[J]. 稀有金属材料与工程, 2007,36(9):1511-1516.

 

Jia W M, Zhang Q X, Bai Z G, et al. Progress on manufacturing techniques of shaped charge liners
[J]. Rare Metal Materials and Engineering,2007,36(9):1511-1516. 

 


[17]柳映莉. TC2钛异形管热挤压成形工艺
[J]. 热加工工艺, 2009, 38(17):165-166.

 

Liu Y L. Warm extrusion process for special pipe of TC2 titanium alloy
[J]. Hot Working Technology, 2009, 38(17):165-166.

 


[18]杨宝付, 张治民, 王强, 等. TC4合金等温挤压过程的有限元数值模拟
[J]. 热加工工艺, 2004,33(1):34-36.

 

Yang B F, Zhang Z M, Wang Q, et al. Numerical simulation of finite element of isothermal extrusion process of TC4 alloy
[J]. Hot Working Technology, 2004,33(1):34-36.

 


[19]李超,李付国,张莹,等.一种基于等势场的胀形坯料反推新方法
[J].机械工程学报,2005,41(11):131-137.

 

Li C, Li F G, Zhang Y, et al. A new method for backpropagation of expanded blanks based on isotropic field
[J]. Journal of Mechanical Engineering, 2005,41(11):131-137.

 


[20]肖军. 材料成形过程的类等势场法模拟与预成形设计
[D].西安:西北工业大学, 2006.

 

Xiao J. Equipotential-field Simulation and Preform Design in Materials Processing Engineering
[D].Xi′an:Northwestern Polytechnical University, 2006.

 


[21]邓聪颖,殷国富,方辉,等.基于正交试验的机床结合部动刚度优化配置
[J].机械工程学报,2015,51(19):146-153.

 

Deng C Y, Yin G F, Fang H, et al. Optimized configuration of dynamic stiffness of machine tool joint based on orthogonal test
[J]. Journal of Mechanical Engineering, 2015,51(19):146-153.

 


[22]王晓娜,李付国,肖军,等.基于类等势场的粉末高温合金盘件预成形设计及有限元模拟
[J].机械工程学报,2009,45(5):237-243.

 

Wang X N, Li F G, Xiao J, et.al. Pre-forming design and finite element simulation of powdered high temperature alloy disk parts based on isotropic-like field
[J]. Journal of Mechanical Engineering, 2009,45(5):237-243.

 


[23]何国云,徐勇,魏科,等.多道次加载下TC6钛合金作动筒等温锻造成形规律
[J].锻压技术,2024,49(1):23-31. 

 

He G Y, Xu Y, Wei  K, et al. Isothermal forging and molding law of TC6 titanium alloy actuator cylinder under multi-passloading
[J].Forging & Stamping Technology,2024,49(1):23-31.

 


[24]张启飞,金淼,陈雷,等.近α型钛合金航空锻件宏观清晰晶形成机理及预测模型
[J].机械工程学报,2021,57(8):133-145.

 

Zhang Q F, Jin M, Chen L, et al. Macroscopic clear crystal formation mechanism and prediction model of near-alpha type titanium alloy aerospace forgings
[J]. Journal of Mechanical Engineering, 2021,57(8):133-145.

 


[25]王博,岳战国,王亚安,等.基于Deform-3D钛合金模锻件成形的仿真分析
[J].锻压技术,2024,49(4):35-40.

 

Wang B, Yue Z G, Wang Y A, et al. Simulation analysis of forming titanium alloy drop-forged parts based on Deform-3D
[J]. Forging & Stamping Technology,2024,49(4):35-40.

 

 


[26]向彪, 张鹏, 崔明亮. TB6钛合金的热加工工艺优化与组织预测
[J]. 塑性工程学报, 2022, 29(7):107-118.

 

Xiang B, Zhang P, Cui M L. Hot working process optimization and microstructure prediction of TB6 titanium alloy
[J]. Journal of Plasticity Engineering, 2022, 29(7):107-118. 

 


[27]张君彦. 细晶TC4钛合金的热加工图及动态再结晶行为研究
[D].西安:西安建筑科技大学, 2019.

 

Zhang J Y. Study on Fine Heat Treatment Diagram and Dynamic Recrystallization Behavior of TC4 Titanium Alloy
[D]. Xi′an:University of Architecture and Technology, 2019.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com