Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of different electrolytes on electrochemical plasticization for 304L stainless steel bar
Authors: Guo Xin1 2 Chen Tijun1 
Unit: (1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals  Lanzhou University of Technology  Lanzhou 730050  China   2.Lanzhou LS Heavy Equipment Co. Ltd. Lanzhou 730314 China) 
KeyWords: electrochemical cold drawing  electrochemical plasticization  multiple slip   electrolyte work hardening 
ClassificationCode:TG356
year,vol(issue):pagenumber:2025,50(4):77-85
Abstract:

 Abstract: The influences of different types of electrolytes on the electrochemical plasticization (EP) of 304L stainless steel bars in the electrochemical cold drawing (ECD) process were investigated by using methods such as drawing force, microhardness and electron backscattering diffraction (EBSD), and the traditional cold drawing (TCD) was compared. The results show that 304L stainless steel is pitted in NaCl and HCl solutions, and the pits on the surface of bar are scattered and uneven, significantly affecting the electrochemical plasticization effect. Although it is uniformly corroded in H2O (tap water) and NaOH solution, the corrosion rate is too slow, resulting in an insignificant plasticization effect. In dilute H2SO4 solution, the electrochemical corrosion rate is the fastest and uniform, and the plasticization effect is the best. After drawing, the dislocation density in the deformation layer on the surface of bar is the lowest, the deformation layer is the thinnest, and the deformation degree of grains in the deformation layer is the smallest, resulting in the smallest degree of work hardening on the surface of bar, making the drawing easier. Compared with TCD, the maximum reduction rate of ECD single-pass drawing force in H2SO4 solution reaches 34.8%, and the maximum reduction in surface hardness is 37.1%. Thus, compared with TCD, ECD obtains the products with better surface quality.

 
Funds:
基金项目:国家自然科学基金资助项目(51971105)
AuthorIntro:
作者简介:郭鑫(1995-),男,硕士研究生
Reference:

 
[1]罗忠河. 我国不锈钢需求仍将保持快速增长
[N]. 中国冶金报,2023-05-31. 


 

Luo Z H.China′s stainless steel demand will continue to maintain rapid growth
[N]. China Metallurgy, 2023-05-31.

 


[2]Kumar P, Agnihotri G. Cold drawing process-A review
[J]. Metal Forming,2013,3(3):988-994.

 


[3]赵玉贤. TC4钛合金棒线材冷拉拔加工工艺研究
[D]. 大连:大连理工大学,2009.

 

Zhao Y X.Research on Processing Technology for Cold Drawing Wire of TC4 Titanium Alloy
[D]. Dalian: Dalian University of Technology,2009.

 


[4]Milad M, Zreiba N, Elhalouani F, et al. The effect of cold work on structure and properties of AISI 304 stainless steel
[J]. Journal of Materials Processing Technology, 2008,203: 80-85.

 


[5]Guan X J, Jia Z P, Varkani M A,et al. Effect of grain boundary engineering on the work hardening behavior of AL6XN super-austenitic stainless steel
[J]. Acta Metallurgica Sinica (English Letters), 2022,36 (4): 681-693.

 


[6]Wu C L, Zhao T, Zhang S,et al. Modulating surface machining to optimize work hardening and corrosion behavior in 304 austenitic stainless steel
[J]. Journal of Materials Engineering and Performance, 2023,32 (22): 10363-10370.

 


[7]邓小民,谢玲玲,阎亮明. 金属挤压与拉拔工程学
[M]. 合肥:合肥工业大学出版社,2014 .

 

Deng X M, Xie L L, Yan L M. Metal Extrusion and Drawing Engineering
[M]. Hefei:Hefei University of Technology Press, 2014.

 


[8]林玉珍,杨德钧. 腐蚀与腐蚀控制原理
[M]. 北京:中国石化出版社,2014.

 

Lin Y Z,Yang D J. Principles of Corrosion and Corrosion Control
[M]. Beijing: China Petrochemical Press,2014.

 


[9]陆永浩,褚武扬,高克玮,等.304L不锈钢在高温水中的应力腐蚀裂纹扩展
[J].金属学报,2004(7):763-767.

 

Lu Y H, Chu W Y, Gao K W, et al. Stress corrosion cracking extension of 304L stainless steel in high temperature water
[J]. Acta Metallurgica Sinica,2004(7):763-767.

 


[10]武焕春.核电主管道不锈钢的腐蚀疲劳行为研究
[D].北京:北京科技大学,2016.

 

Wu H C.Study on Corrosion Fatigue Behaviors of Primary Coolant Pipes of Nuclear Power Plants
[D]. Beijing: University of Science and Technology Beijing,2016.

 


[11]Gutman E M, Unigovski Yaakov B,Tijun C, et al. Application of the chemomechanical effect in drawing alloys with low plasticity
[J]. Journal of Materials Engineering and Performance, 2023, 32 (23): 10487-10502.

 


[12]Gutman E M.Surface plasticity modification using electrolytic etching
[J].Surface and Coatings Technology,1994,67 (1/2): 133-136.

 


[13]Chen T J, Yang B Q, Li B, et al. Effects of electrochemical corrosion characteristis on electrochemical cold drawing of Q235 steel bar
[J]. Journal of Materials Processing Technology, 2018, 275:116375.

 


[14]Guo J L, Chen T J. Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar
[J]. Journal of Iron and Steel Research International, 2022, 29 (5):819-835.

 


[15]李雷亮. 原位 Mg2Sip/AM60B 镁基复合材料棒材电化学冷拉拔的研究
[D]. 兰州:兰州理工大学,2016.

 

 Li L L. Study on Electrochemical Cold Drawing of In-situ Mg2Sip/AM60B Magnesium Matrix Composite Bars
[D]. Lanzhou: Lanzhou University of Science and Technology, 2016.

 


[16]崔智慧.电流密度和晶粒尺寸对纯铜电化学塑化的影响
[D]. 兰州:兰州理工大学,2023.

 

Cui Z H. Effects of Current Density and Grain Size on Electrochemical Plasticization of Pure Copper
[D]. Lanzhou: Lanzhou University of Science and Technology, 2023.

 


[17]Yan J Y, Chen T, Gutman E M, et al. Kinetic nature of electrochemical plasticization
[J]. International Journal of Plasticity, 2023, 171: 103820.

 


[18]丁海峰,杨吉春,张春香,等. 固溶处理对304L不锈钢晶粒长大及力学性能的影响
[J]. 材料热处理学报, 2016,37 (8): 102-107. 

 

Ding H F, Yang J C, Zhang C X, et al. Effect of solid solution treatment on grain growth and mechanical properties of 304L stainless steel
[J]. Transactions of Materials and Heat Treatment, 2016, 37 (8): 102-107.

 


[19]Unigovski Y B,Gutman E M,Koren Z,et al. Plasticity of light metal matrix composites under anodic polarization
[J]. Journal of Metals, Materials and Minerals, 2018, 28 (2):11-17.

 


[20]孙晓光,韩晓辉,张星爽,等.超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究
[J].中国腐蚀与防护学报,2019,39(4):345-352.

 

Sun X G, Han X H, Zhang X S, et al. Research on corrosion resistance of welded joints of ultra-low carbon austenitic stainless steel and environmentally friendly chemical passivation process
[J]. Journal of Chinese Society for Corrosion and Protection,2019,39(4):345-352.

 


[21]Jun Z,Tinghui J,Hengcheng L, et al. A comparative study on corrosion behaviors of Fe35Mn10Cr20Ni35 high-entropy alloy and 304 stainless steel in sulfuric acid aqueous solution
[J]. Advanced Engineering Materials, 2022, 24 (10):36-39.

 


[22]崔静,杨帆,杨霆浩,等. 不锈钢在NaCl溶液中点蚀的数值模拟
[J]. 中国腐蚀与防护学报, 2020, 41 (2): 50-57.

 

 Cui J, Yang F, Yang T H, et al. Numerical simulation of pitting corrosion of stainless steel in NaCl solution
[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 41 (2): 50-57.

 


[23]鞠云,朱维东,王鹏程. 304不锈钢在稀盐酸中的电化学腐蚀行为
[J]. 热加工工艺,2014, 43 (6): 53-55.

 

 Ju Y, Zhu W D, Wang P C. Electrochemical corrosion behavior of 304 stainless steel in dilute hydrochloric acid
[J]. Hot Working Technology, 2014, 43 (6): 53-55.

 


[24]Zhao H, Wynne B P, Palmiere E J. A phase quantification method based on EBSD data for a continously cooled microallyed steel
[J]. Materials Characterization, 2017, 123(11): 339-346.

 


[25]Ruggles T J, Fullwood D T. Estimations of bulk geometrically necessary dislocation density using high resolution EBSD
[J]. Ultramicroscopy, 2013, 133:8-15.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com