Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Springback prediction of forming free-form surface parts for high-strength 6451 aluminum alloy
Authors: Liang Weikang1 2 3  Wang Yichuan1  Yuan Rong1  Wang Qianting4  Zhou Ce2  Deng Jianghua3   Ran Jilong5  Liu Zhenshan6 
Unit: (1. College of Materials Science and Engineering  Fujian University of Technology  Fuzhou 350118  China 2. Fujian Nanping Aluminium    Co.  Ltd.  Nanping 353000  China 3. School of Mechanical Engineering and Automation  Fuzhou University  Fuzhou 350108  China    4.School of Materials Science and Engineering  Xiamen University of Technology  Xiamen 361024  China 5.Chinalco Ruimin Co.    Ltd.  Fuzhou 350015  China 6.Chinalco Materials Application Research Institute Co.  Ltd.  Beijing 102209  China) 
KeyWords: high-strength 6451 aluminum alloy  yield criteria  hardening model  free-form surface parts  springback 
ClassificationCode:TG386
year,vol(issue):pagenumber:2025,50(4):25-36
Abstract:

 Aiming at the problem of springback in the stamping process of high-strength 6451 aluminum alloy for automoblie interior panels, for free-form surface parts, VUMAT subroutine was developed by yield criterion Yld2000-2d and Voce-Swift mixed hardening model to simulate and analysis the stamping process of free-form surface parts for 6451 aluminum alloy, and the influence laws of stamping speed,holding time and number of cycles on the springback of free-form surface parts were investigated by software ABAQUS. The results indicate that increasing the stamping speed, holding time and number of cycles can reduces the springback amount of free-form surface parts, and the stamping speed has the greatest impact, followed by the holding time, and the number of cycles has the least impact. The error between the simulated value and experimental value for the springback amount of free-form surface parts is 3.13% to 11.31%, which  indicates that the developed VUMAT subroutine can better predict the springback law of free-form surface parts. 

 
Funds:
基金项目:福建省科技计划区域发展项目 (2023H4021);福建省科技计划对外合作产业化项目(2022I1011);福州市科技计划科技重大项目(2021-ZD-214);宁德市产学研合作项目(2021C004);福建省科技计划高校产学合作项目(2023H6035,2023H6036)
AuthorIntro:
作者简介:梁卫抗(1985-),男,博士,副教授
Reference:

 
[1]李光霁, 刘新玲. 汽车轻量化技术的研究现状综述
[J]. 材料科学与工艺, 2020, 28(5): 47-61. 


 

Li G J, Liu X L. Literature review on research and development of automotive lightweight technology
[J]. Materials Science and Technology, 2020, 28(5): 47-61.

 


[2]方刚, 陈祝, 雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用
[J]. 塑性工程学报, 2021,28(6): 8-18.

 

Fang G, Chen Z, Lei L P. Application of non-associated constitutive models in finite element simulation of aaluminum alloy sheet forming
[J]. Journal of Plasticity Engineering, 2021, 28(6): 8-18.

 


[3]黄珍媛, 谭朋朋, 魏婉珠, 等. 3104铝合金薄板本构模型
[J]. 塑性工程学报, 2021, 28(7): 117-123. 

 

Huang Z Y, Tan P P, Wei W Z, et al. Constitutive model of 3104 aluminum alloy sheet
[J]. Journal of Plasticity Engineering, 2021, 28(7): 117-123.

 


[4]Kuwabara T, Mori T, Asano M, et al. Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation
[J]. International Journal of Plasticity, 2017, 93: 164-186. 

 


[5]Mulidrán P, iser M, Slota J, et al. Numerical prediction of forming car body parts with emphasis on springback
[J]. Metals, 2018, 8(6): 435-450.

 


[6]Park T, Chung K, Ryou H,et al. Numerical simulation of time-dependent spring-back behavior for aluminum alloy 6022-T4 sheet
[J]. InAIP Conference Proceedings, 2010, 1252(1): 153-160.

 


[7]Wu H Y, Yu H Y. A constitutive model for cracking prediction of steel/aluminum thin-walled tubes during plastic joining
[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(5): 2357-2370. 

 


[8]Asmael M, OtonyeTekena F, Tauqir N. Prediction of springback behavior of Vee bending process of AA5052 aluminum alloy sheets using machine learning
[J]. Jordan Journal of Mechanical & Industrial Engineering,2023,17(1):1-14.

 


[9]Peter H, Sebastian S, Marion M. Investigation of the springback behaviour of high-strength aluminium alloys based on cross profile deep drawing tests
[J]. Procedia Manufacturing,2020, 47:1223-1229. 

 


[10]闫华军, 王波, 张双杰, 等. 铝合金地板梁拉延成形回弹分析及补偿
[J]. 塑性工程学报, 2020, 27(2):21-28. 

 

Yan H J, Wang B, Zhang S J, et al. Springback analysis and compensation of drawing of aluminum alloy floor beam
[J]. Journal of Plasticity Engineering, 2020, 27(2):21-28.

 


[11]梁家生. 铝合金壳体精密成形回弹控制工艺优化
[J]. 精密成形工程, 2024, 16(2): 104-107.

 

Liang J S. Optimization of precision forming process for aluminum alloy shell
[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 104-107.

 


[12]Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminum alloy sheets-Part I:Theory
[J]. International Journal of Plasticity, 2003, 19(9): 1297-1319. 

 


[13]陈俊甫.延性金属拉伸大应变范围硬化曲线测量研究
[D].长春:吉林大学,2020.

 

Chen J F. Study on the Determination of Hardening Curve in Large Range of Strains from Tensile Testes for Ductile Metals
[D]. Changchun:Jilin University,2020.

 


[14]Stanic' M. Calibration and Validation of a Damage Model for 6005-T6 Aluminium
[D]. Zagreb: University of Zagreb,2021.

 


[15]董伊康, 齐建军, 孙力, 等. 车用钢板材料硬化模型的适用性
[J]. 机械工程材料, 2020, 44(10): 81-86.

 

Dong Y K, Qi J J, Sun L, et al. Applicability of hardening models for automobile steel sheets
[J]. Materials for Mechanical Engineering, 2020, 44(10): 81-86.

 


[16]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature
[S].

 


[17]段晋昌, 梁卫抗, 马立安, 等. SUS430不锈钢自由曲面弯曲回弹的预测和试验研究
[J].锻压技术,2022,47(2):220-228.

 

Duan J C, Liang W K, Ma L A, et al. Prediction and experimental research on bending springback for free-form surface of SUS430 stainless steel
[J]. Forging & Stamping Technology, 2022, 47(2): 220-228.

 


[18]胡启. 轻质高强板塑性变形的各向异性屈服准则与失效模型的理论研究
[D]. 上海:上海交通大学, 2019.

 

Hu Q. Theory Research on Anisotropic Yield Criterion and Failure Model for the Plastic Deformation of Light Weight and High Strength Sheet Metal
[D]. Shanghai: Shanghai Jiao Tong University,2019.

 


[19]李健强, 张赛军, 龚小龙, 等. 基于优化方法的复杂各向异性屈服函数参数标定
[J].塑性工程学报, 2017, 24(1): 160-167.

 

 

Li J Q, Zhang S J, Gong X L, et al. Constitutive parameter identification of complex orthotropic yield functions based on optimization method
[J]. Journal of Plasticity Engineering, 2017, 24(1): 160-167.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com