Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Surface defect detection method on cold rolled sheet metal based on E-YOLO
Authors: Chen Dong1 Liu Xinyi2 3 4 Qi Zhentao1 Yang Peiqing1 Shen Zhen1 
Unit: 1.Department of Equipment Manufacturing Engineering  Jinan Technician College  2. School of Mechanical and Equipment Engineering  Hebei University of Engineering 3. Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province 4. Collaborative Innovation Center for Modern Equipment Manufacturing of Jinan New Area (Hebei) 
KeyWords: cold rolled sheet metal surface defect detection deep learning YOLO lightweight model 
ClassificationCode:TH113.1;TG335.5
year,vol(issue):pagenumber:2025,50(2):125-131
Abstract:

In practical manufacturing systems, surface defects on the cold rolled sheet metal can lead to a decrease in material strength and pose a safety risk, while the accuracy and stability of traditional detection methods are difficult to guarantee. Therefore, a lightweight and efficient defect detection model E-YOLO (Efficient-YOLO) was proposed, and in response to the shortcomings of the YOLOv8 model in small target detection, feature extraction efficiency and model inference speed, the structural innovations and optimizations about YOLOv8 model  were conducted. The inefficient neck connection structure of the original model was modified, the perception ability of the model for subtle defect features was enhanced by introducing a multi-branch feature fusion mechanism and innovatively adopting a feature re-extraction structure. Finally,experiments show that compared with YOLOv8, E-YOLO improves the detection accuracy by 7.3% and increases the detection speed by approximately 18 times compared with the larger model Faster RCNN, providing a feasible way for efficient and accurate detection of surface defects on cold rolled sheet metal.

Funds:
河北省专精特新小巨人企业科技特派团资助项目(SJ240140123);河北工程大学创新基金项目(SJ2401002049)
AuthorIntro:
作者简介:陈栋(1991-),男,硕士,讲师,E-mail:2313030095@qq.com;通信作者:刘欣宜(1993-),女,博士,讲师,E-mail:liuxy93@126.com
Reference:

[1]Wang Y C, Gao L, Gao Y P, et al. A new graph-based semi-supervised method for surface defect classification[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102083. 


 

[2]Kim H M, Rho Y W, Yoo H R, et al. A study on the measurement of axial cracks in the magnetic flux leakage NDT system[A]. Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012)[C]. Seoul, Korea:IEEE, 2012.

 

[3]Jeon Y J, Choi D C, Lee S J, et al. Defect detection for corner cracks in steel billets using a wavelet reconstruction method[J]. Journal of the Optical Society of America A, 2014, 31(2): 227-237. 

 

[4]Zhang B Y, Yang H, Yin Z P. A region-based normalized cross correlation algorithm for the vision-based positioning of elongated IC chips[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(3): 345-352.

 

[5]豆远航,崔学习,钟馨平,等.基于深度学习的非接触应变测量网格图像修复技术[J].锻压技术,2024,49(8):195-204.

 

Dou Y H, Cui X X, Zhong X P, et al. Grid image restoration technology for non-contact strain measurement based on deep learning [J]. Forging & Stamping Technology,2024,49(8):195-204.

 

[6]Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.

 

[7]Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, real-time object detection[A]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].Las Vegas Nevada,USA:IEEE,2016.

 

[8]He Y, Song K C, Meng Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493-1504. 

 

[9]Du W Z, Shen H Y, Fu J Z, et al. Approaches for improvement of the X-ray image defect detection of automobile casting aluminum parts based on deep learning[J]. NDT & E International,2019,107:102144.

 

[10]Chen W, Gao Y P, Gao L, et al. A new ensemble approach based on deep convolutional neural networks for steel surface defect classification[J]. Procedia CIRP, 2018, 72:1069-1072.

 

[11]刘艳菊,王秋霁,张惠玉,等.基于改进SSD的工件表面缺陷检测[J].热加工工艺,2024,53(2):134-139.

 

Liu Y J, Wang Q J, Zhang H Y, et al. Defect detection of workpiece surface based on improved SSD [J]. Hot Working Technology, 2024, 53 (2): 134-139.

 

[12]Tan M X, Pang R M, Le Q V. EfficientDet:Scalable and efficient object detection[A]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Seattle,WA,USA:IEEE,2020.

 

[13]Wang P Q, Chen P F, Yuan Y, et al. Understanding convolution for semantic segmentation[A]. Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)[C]. Lake Tahoe,NV,USA:IEEE,2018.

 

[14]Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[A]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Nashville, TN, USA:IEEE,2021.

 

[15]Han K, Wang Y H, Tian Q, et al. GhostNet: More features from cheap operations[A]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Seattle, WA, USA:IEEE,2020. 

 

[16]Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[A].Computer Vision-ECCV 2014[C].

Berlin,Germany:Springer International Publishing, 2014.

 

[17]Sun P, Zhang R, Jiang Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[A]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Nashville, TN, USA:IEEE,2021.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com