Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of material strength difference effect on buffering characteristics for thin-walled metal tube
Authors: Wang Lihong1 2 Guo Yipei1 Niu Ke1 2 
Unit: 1. Locomotive and Vehicle College Zhengzhou Railway Vocational & Technical College 2. Henan Engineering Research Center of Rail Transit Intelligent Security 
KeyWords: strength difference effect thin-walled metal tube buffering characteristics constitutive model crush-type expansion-type 
ClassificationCode:U287.1
year,vol(issue):pagenumber:2025,50(2):75-84
Abstract:

In order to investigate the influence of material strength difference effect on the buffer characteristics of thin-walled metal tubes applied to rail vehicles, the axial compression finite element simulation analysis of thin-walled metal tubes was conducted by Von Mises and CPB06 constitutive models. Firstly, based on the axial notch tension and notch compression test results of commonly used 6082-T6 aluminum alloy for thin-wall metal tubes, Von Mises and CPB06 constitutive models were calibrated for parameters. Secondly, the simulation analysis consistent with experimental conditions was conducted by using the explicit dynamic finite element calculation software LS-DYNA to verify the accuracy of parameter calibration for the constitutive model. Finally, a simulation study was conducted on the axial compression characteristics of a certain crush-type and expansion-type thin-walled metal tubes, and the influence of considering or not considering the material strength difference effect on the response characteristics for the two thin-walled metal tubes was compared. The results show that the material strength difference effect has a significant impact on the deformation characteristics, load characteristics and energy absorption characteristics of crush-type thin-walled metal tube, and the impact on the expansion-type thin-walled metal tube is relatively small.

Funds:
国家自然科学基金资助项目(52175123);河南省科技攻关计划项目(252102220071,242102320221)
AuthorIntro:
作者简介:王丽红(1980-),女,硕士,副教授,E-mail:honly_lee@sina.com
Reference:

[1]Zhu T, Xiao S N, Lei C, et al. Rail vehicle crashworthiness based on collision energy management: An overview[J]. International Journal of Rail Transportation, 2021, 9(2): 101-131.


 

[2]白中浩, 周存文, 龚超, 等. 仿生层级薄壁方管的耐撞性研究[J]. 中国公路学报, 2020, 33(1): 181-190.

 

Bai Z H,Zhou C W,Gong C,et al. Crashworthiness of bio-inspired hierarchical thin-walled square tubes[J]. China Journal of Highway and Transport, 2020, 33(1): 181-190.

 

[3]朱涛, 肖守讷, 杨超, 等. 机车车辆被动安全性研究综述[J]. 铁道学报, 2017, 39(5): 22-32.

 

Zhu T, Xiao S N, Yang C, et al. State-of-the-art development of passive safety of rolling stocks[J]. Journal of the China Railway Society, 2017, 39(5): 22-32.

 

[4]马骢瑶. 大型飞机典型货舱地板下部结构坠撞吸能特性研究[D]. 天津: 中国民航大学, 2018.

 

Ma C Y. Crash Characteristic for the Cargo Subfloor Structure of Civil Aircraft[D]. Tianjin: Civil Aviation University of China, 2018.

 

[5]周礼, 王宇, 蒋忠城, 等. 泡沫填充铝合金多胞防爬器的吸能机理[J]. 塑性工程学报, 2023, 30(2): 231-241.

 

Zhou L, Wang Y, Jiang Z C, et al. Energy absorption mechanism of foam-filled aluminum alloy multi-cell anti-climber[J]. Journal of Plasticity Engineering,2023, 30(2): 231-241.

 

[6]Gao Q C, Xiao S N, Wang X R, et al. Tool failure analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles[J]. Applied Sciences, 2023, 13(3): 1619.

 

[7]贺世忠, 黄科. 轨道车辆膨胀管式吸能元件吸能特性分析[J]. 机械强度, 2019, 41(4): 1006-1011.

 

He S Z, Huang K. Research on the energy absorption characteristics of expansion tube energy absorbing elements for rail vehicles[J]. Journal of Mechanical Strength, 2019, 41(4): 1006-1011.

 

[8]邹广平, 闫安石, 唱忠良, 等.金属薄壁夹层结构变形形式及吸能特性研究[J]. 机械强度, 2023, 45(5): 1249-1253.

 

Zou G P, Yan A S, Chang Z L, et al. Study on deformation form and energy absorption characteristics of metal thin-walled sandwich structure[J]. Journal of Mechanical Strength, 2023, 45(5): 1249-1253.

 

[9]许平, 杨丽婷, 姚曙光, 等. 城轨列车方锥式防爬吸能结构碰撞力学参数设计及多目标优化[J]. 中南大学学报(自然科学版), 2022, 53(5): 1689-1699.

 

Xu P, Yang L T, Yao S G, et al. Collision mechanics parameter design and multi-objective optimization of square cone anti-climbing energy-absorbing structure for urban rail trains[J]. Journal of Central South University(Science and Technology), 2022, 53(5): 1689-1699.

 

[10]袁成标, 肖守讷, 杨宝柱. 低地板列车吸能防爬装置的碰撞特性研究[J]. 机车电传动, 2018(5): 83-88.

 

Yuan C B, Xiao S N, Yang B Z. Study on collision properties of anti-climbing energy absorption device for low-floor vehicles[J]. Electric Drive for Locomotives, 2018(5): 83-88.

 

[11]曾必强, 胡远志, 谢书港. 材料应变率强化效应对结构碰撞响应的影响[A]. 第八届国际汽车交通安全学术会议论文集[C]. 芜湖, 2010.

 

Zeng B Q, Hu Y Z, Xie S G. Effect of strain rate strengthening on structural collision response[A]. Proceedings of the 8th International Forum of Automotive Traffic Safety[C]. Wuhu, 2010.

 

[12]吴鸿超, 梁增友, 冯阳, 等. 薄壁金属管在中高速冲击下的缓冲特性研究[J]. 应用力学学报, 2016, 33(2): 325-331.

 

Wu H C, Liang Z Y, Feng Y, et al. Energy absorption characteristics of the expansion of thin-walled circular metal tubes by middle-speed and high-speed impact of a rigid cylinder[J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 325-331.

 

[13]陈书剑, 肖守讷, 朱涛, 等. 5083P-O和6008-T6铝合金的应变率效应对缓冲器缓冲特性的影响[J]. 中南大学学报(自然科学版), 2019, 50(11): 2665-2675.

 

Chen S J, Xiao S N, Zhu T, et al. Influence of 5083P-O and 6008-T6 aluminum alloys strain rate effect on cushioning characteristics of thin-walled circular metal tube buffer[J]. Journal of Central South University(Science and Technology), 2019, 50(11): 2665-2675.

 

[14]吴章斌, 桂良进, 范子杰. AZ31B镁合金挤压矩形管的轴向压溃试验与吸能特性分析[J].工程力学, 2015, 32(10): 183-190.

 

Wu Z B, Gui L J, Fan Z J. Axial compression tests and energy absorption characteristics of extruded magnesium alloy AZ31B rectangular tubes[J]. Engineering Mechanics, 2015, 32(10): 183-190.

 

[15]冯悦, 肖守讷, 朱涛, 等. 考虑材料失效准则的吸能装置失效行为与碰撞特性[J]. 中南大学学报(自然科学版), 2019, 50(2): 487-496.

 

Feng Y, Xiao S N, Zhu T, et al. Failure behavior and collision characteristics of energy-absorbing structures considering material failure criteria[J]. Journal of Central South University(Science and Technology), 2019, 50(2): 487-496.

 

[16]Bhutada S, Goel M D. Study of effect of provision of cut-outs on axial collapse behaviour of circular aluminium tubes[J]. International Journal of Impact Engineering, 2023, 178(1): 104599.

 

[17]梁海成, 于仁杰, 崔海涛. 挤压态Mg-Gd-Y镁合金的热变形行为[J]. 机械工程学报, 2023, 59(22): 332-342.

 

Liang H C, Yu R J, Cui H T. Thermal deformation behavior of extruded Mg-Gd-Y magnesium alloy[J]. Journal of Mechanical Engineering, 2023, 59(22): 332-342.

 

[18]张斌, 郭玲梅, 汪洋, 等. TA7钛合金拉伸和压缩加载时的孪生变形行为[J]. 中国有色金属学报, 2021, 31(9): 2427-2435.

 

Zhang B, Guo L M, Wang Y, et al. Deformation twinning behavior of TA7 titanium alloy under tension and compression[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(9): 2427-2435.

 

[19]Holmen J K, Frodal B H, Hopperstad O S, et al. Strength differential effect in age hardened aluminum alloys[J]. International Journal of Plasticity, 2017, 99: 144-161.

 

[20]Drucker D C. Relation of experiments to mathematical theories of plasticity[J]. Journal of Applied Mechanics Transactions, 1949, 16(4): 349-357.

 

[21]Yoon J W, Lou Y S, Yoon J H, et al. Asymmetric yield function based on the stress invariants for pressure sensitive metals[J]. International Journal of Plasticity, 2014, 56: 184-202.

 

[22]Lou Y S, Yoon J W. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion[J]. International Journal of Plasticity, 2017, 99: 144-161.

 

[23]Hill R. Theoretical plasticity of textured aggregates[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1979, 85(1):179-191.

 

[24]Lou Y S, Yoon J W. Lode-dependent anisotropic-asymmetric yield function for isotropic and anisotropic hardening of pressure-insensitive materials. Part I: Quadratic function under non-associated flow rule[J]. International Journal of Plasticity, 2023, 166: 103647.

 

[25]Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7): 1171-1194.

 

[26]Bridgman P W. Studies in Large Plastic Flow and Fracture:With Special Emphasis on the Effect of Hydrostatic Pressure[M]. New York: McGraw-Hill, 1952.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com