Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction on finish rolling temperature for hot-rolled strip based on random forest
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG335.5
year,vol(issue):pagenumber:2025,50(1):134-139
Abstract:

 The complex boundary conditions and difficulty in parameter prediction in the precision rolling zone limit the accuracy of traditional online hot rolling temperature prediction for strip steel. Therefore, in order to improve the accuracy of final rolling temperature prediction, a data-driven modeling approach using random forest was adopted, and taking forty-three characteristic factors that affect the final rolling temperature as the input values for the data-driven final rolling temperature prediction model. Then, the imbalanced datasets such as changing specifications were processed by a hybrid algorithm of NCL and SMOTE, and the random feature selection of the decision tree included features that were highly or lowly correlated with the target variable. The results show that the constructed random forest prediction model for the final rolling temperature of hot-rolled strip has a maximum prediction value error of within 15 ℃ on the test set and good regression effect and generalization ability, meeting the accuracy requirements for the final rolling temperature prediction of hot-rolled strip on site.

Funds:
国家自然科学基金资助项目(52305405);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2023HA-TYUTKFYF011);常州工业职业技术学院高层次人才项目(GCC202413101006)
AuthorIntro:
作者简介:马更生(1984-),男,博士,讲师 E-mail:gengshengma@163.com
Reference:

 [1]  龚殿尧, 徐建忠, 刘相华, 等. 热连轧带钢终轧温度控制样本跟踪策略[J]. 东北大学学报(自然科学版), 2006, 27(8):883-886.


Gong D Y, Xu J Z, Liu X H, et al. Sample tracking strategy for finish rolling temperature control of hot-rolled strip[J]. Journal of Northeastern University (Natural Science), 2006, 27(8): 883-886.

 

[2]  周进, 沈丙振, 韩志强, 等. 精轧区热轧带钢温度场的数值模拟[J]. 钢铁研究学报, 2003, 15(2): 14-18.

Zhou J, Shen B Z, Han Z Q, et al. Numerical simulation on temperature field of hot strip in finish rolling process[J]. Journal of Iron and Steel Research, 2003, 15(2): 14-18.

 

[3]  刘玠, 杨卫东, 刘文仲. 热轧生产自动化技术[M]. 2版. 北京: 冶金工业出版社, 2017.

Liu J, Yang W D, Liu W Z. Automation Technology for Hot Rolling Production[M]. 2nd Edition. Beijing: Metallurgical Industry Press, 2017.

 

[4]  龚殿尧, 徐建忠, 薛文颖, 等. 热连轧带钢终轧温度预报模拟软件开发[J]. 钢铁研究学报, 2007(1): 60-62.

Gong D Y, Xu J Z, Xue W Y, et al. A simulation software for forecasting finish rolling temperature for hot strip mill[J]. Journal of Iron and Steel Research, 2007(1): 60-62.

 

[5]  Laasraoui A, Jonas J J. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip[J]. ISIJ International, 1991, 31(1): 95-105.

 

[6]  Lee J H, Kwak W J, Sun C G, et al. Precision online model for prediction of strip temperature in hot strip rolling[J]. Ironmaking & Steelmaking, 2004, 31(2): 153-168.

 

[7]  邬晓方, 陈剑, 钱涛. 基于大数据及人工智能技术的电力行业技能等级评价方法[J]. 自动化技术与应用, 2024, 43(3): 165-168.

Wu X F, Chen J, Qian T. Skill level evaluation method of power industry based on big data and artificial intelligence technology[J]. Techniques of Automation and Applications, 2024, 43(3): 165-168.

 

[8]  Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.

 

[9]  Svetnik V, Liaw A, Tong C, et a1. Random forest: A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information & Computer Sciences, 2003, 43(6): 19-47.

 

[10]陶新民, 刘福荣, 杜宝祥. 不均衡数据SVM分类算法及其应用[M]. 哈尔滨: 黑龙江科学技术出版社, 2011.

Tao X M, Liu F R, Du B X. SVM Classification Algorithm and Application for Imbalanced Data[M]. Harbin: Heilongjiang Science and Technology Press, 2011.

 

[11]王青天, 孔越. Python金融大数据风控建模实战: 基于机器学习[M]. 北京: 机械工业出版社, 2020.

Wang Q T, Kong Y. Modeling Practical of Python Financial Big Data Risk Control: Based on Machine Learning[M]. Beijing: China Machine Press, 2020.

 

[12]梅子行. 智能风控:原理、算法与工程实践[M]. 北京: 机械工业出版社, 2020.

Mei Z X. Intelligent Risk Control:Principles, Algorithms and Practice[M]. Beijing: China Machine Press, 2020.

 

[13]Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357.

 

[14]纪英俊, 勇晓玥, 刘英林, 等. 基于随机森林的热轧带钢质量分析与预测方法[J]. 东北大学学报(自然科学版), 2019, 40(1): 11-15.

Ji Y J, Yong X Y, Liu Y L, et al. Random forest based quality analysis and prediction method for hot-rolled strip[J]. Journal of Northeastern University (Natural Science), 2019, 40(1): 11-15.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com