Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Mechanical properties of TA15 titanium alloy at a wide range of temperatures
Authors: Wei Shilong1  Pei Jibin1 2 
Unit: (1.Railway Locomotive and Vehicle College Jilin Railway Technology College  Jilin 132299 China  2.School of Materials Science and Engineering  Dalian University of Technology  Dalian 116023 China) 
KeyWords: TA15 titanium alloy  high temperature tensile  high temperature wear  mechanical properties  fracture 
ClassificationCode:TG163
year,vol(issue):pagenumber:2024,49(12):188-197
Abstract:

 Abstract: In order to explore the service performance of TA15 titanium alloy, the tensile and wear properties of TA15 titanium alloy  at a wide area temperature from room temperature to 800 ℃ were systematically analyzed. Then, the microstructure and wear morphology of the alloy were analyzed. The experimental results show that the tensile strength of TA15 titanium alloy significantly decreases with the increasing of temperature at the loading speed of 1 mm·min-1 , and all test samples at all temperatures exhibit the ductile fracture. Especially above 600 ℃, TA15 titanium alloy exhibits extremely high ductility and plasticity. At 600 ℃, TA15 titanium alloy not only has high tensile strength, but also presents the lowest friction factor, making it an ideal material for high-temperature service environments. The influence laws of different temperatures on the tensile fracture surface, wear mechanisms and microstructure of TA15 titanium alloy are obtained, contributing the reference to the study of the high-temperature properties for TA15 titanium alloy.

 
Funds:
基金项目:2022年度吉林省高教科研课题(JGJX2022D721);第二批国家级职业教育教师教学创新团队课题研究项目(ZI2021090306)
AuthorIntro:
作者简介:魏世龙(1985-),男,学士,副教授 E-mail:peijb@sina.com
Reference:

 
[1]陈源,李淑慧,李永丰,等.TA15钛合金应力松弛行为宏微耦合本构建模
[J].机械工程学报,2022,58(12):64-74.


 

Chen Y, Li S H, Li Y F, et al. Macromicro coupled constitutive modeling for stress relaxation behavior of TA15 alloy sheet
[J]. Journal of Mechanical Engineering, 2022,58(12):64-74.

 


[2]Wu H L, Sun Z C, Cao J, et al. Formation and evolution of trimodal microstructure during dual heat treatment for TA15 Tialloy
[J]. Journal of Alloys and Compounds, 2019, 786: 894-905. 

 


[3]齐铭,安震,张凯,等.热处理对锻压TA15钛合金棒组织和性能的调控
[J].锻压技术,2022,47(8):193-199.

 

Qi M, An Z, Zhang K, et al. Regulation of heat treatment on microstructure and properties of forged TA15 titanium alloy bar
[J]. Forging & Stamping Technology, 2022,47(8):193-199.

 


[4]Hao F, Xiao J F, Feng Y, et al. Tensile deformation behavior of a nearα titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range
[J]. Journal of Materials Research and Technology, 2020, 9(3): 2818-2831. 

 


[5]Zhao H J, Wang B Y, Ju D Y, et al. Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy
[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2018, 28(12): 2449-2459. 

 


[6]Fan X G, Yang H, Gao P F. Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy
[J]. Materials and Design, 2013, 51: 34-42. 

 


[7]Liu G, Wang K H, He B B, et al. Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy
[J]. Materials and Design, 2015, 86: 146-151. 

 


[8]Zhao J, Lyu L X, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model
[J]. Materials Science & Engineering A, 2017, 707(8): 30-39. 

 


[9]Zhao J, Lyu L, Wang K H, et al. Effects of strain state and slip mode on the texture evolution of a nearα TA15 titanium alloy during hot deformation based on crystal plasticity method
[J]. Journal of Materials Science and Technology, 2020, 38: 125-134. 

 


[10]Gao P F, Zhan M, Fan X G, et al. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure
[J]. Materials Science & Engineering A, 2017, 689(2): 243-251. 

 


[11]Lou M, Alpas A T. High temperature wear mechanisms in thermally oxidized titanium alloys for engine valve applications
[J]. Wear, 2019, 426-427(11): 443-453. 

 


[12]Mengis L, Grimme C, Galetz M C. Hightemperature sliding wear behavior of an intermetallic γbased TiAl alloy
[J]. Wear, 2019, 426-427(11): 341-347. 

 


[13]Zhang Z N, Li Z, Pan S H, et al. Enhanced strength and hightemperature wear resistance of Ti6Al4V alloy fabricated by laser solid forming
[J]. Journal of Manufacturing Science and Engineering, 2022, 144(11): 1-11.

 


[14]Mao Y S, Wang L, Chen K M, et al. Tribolayer and its role in dry sliding wear of Ti-6Al-4V alloy
[J]. Wear, 2013, 297(1-2): 1032-1039.

 


[15]GB/T 228.2—2015,金属材料拉伸试验第2部分:高温试验方法
[S].

 

GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2:Method of test at elevated temperature
[S].

 


[16]GB/T 3960—2016, 塑料 滑动摩擦磨损试验方法
[S].

 

GB/T 3960—2016, Plastics—Test method for friction and wear by sliding
[S].

 


[17]牟建伟,于传军,汤海波,等.激光增材连接TA15钛合金显微组织及力学性能研究
[J].中国激光,2023,50(16):221-228.

 

Mou J W, Yu C J, Tang H B, et al. Microstructure and mechanical properties of TA15 titanium component manufactured via laser additive connection
[J]. Chinese Journal of Lasers, 2023,50(16):221-228.

 

 


[18]Feng Y J, Cui G R, Zhang W C, et al. High temperature tensile fracture characteristics of the oriented TiB whisker reinforced TA15 matrix composites fabricated by presintering and canned extrusion
[J]. Journal of Alloys and Compounds, 2018, 738: 164-172. 

 


[19]黄立国,庄伟彬,高志玉.Ti-6Al-4V-0.1B钛合金的热压缩变形行为
[J].稀有金属,2023,47(4):512-519.

 

Huang L G, Zhuang W B, Gao Z Y. Compression deformation behavior of Ti-6Al-4V-0.1B titanium alloy at elevated temperature
[J]. Chinese Journal of Rare Metals, 2023,47(4):512-519.

 


[20]Shin D H, Kim I, Kim J, et al. Microstructure development during equalchannel angular pressing of titanium
[J]. Acta Materialia, 2003, 51(4): 983-996. 

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com