Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation analysis on forming for titanium alloy die forgings based on Deform-3D
Authors: Wang Bo Yue Zhanguo Wang Ya′an  Bian Yingshuai He Zhengwen 
Unit: Xi′an Aviation Brake Technology Co. Ltd. 
KeyWords: TC11 titanium alloy  cylinderial die forgings metal flow direction  forging fire  folding  crack 
ClassificationCode:TG319
year,vol(issue):pagenumber:2024,49(4):35-40
Abstract:

 The cylindrical die forgings billet of titanium alloy was prepared by 10000 t hydraulic press, and based on Deform-3D software, the serious local folding and cracking problems occured in the forming process were simulated and analysed. Then, two solutions of billet structure optimization and forging fire increase were proposed, and the process verification was carried out. Furthermore, the mechanical properties at room temperature and high temperature of forgings were detected by tensile and impact samples, and the microstructure of forgings was analysed by optical microscope. The results show that during the die forging process of titanium alloy, the metal streamline, temperature field distribution and equivalent strain variables are abnormal, which resulting in the risk of folding and cracking in local positions of forgings. By optimizing the billet structure and increasing the forging fire, the distributions of metal streamline direction and temperature field in forging are effectively controlled to improve the forming limit of titanium alloy in local positions, avoid folding and cracking defects in the forming process and ensure the product quality, and the performances of product meet the requirements to improve the production efficiency.

Funds:
AuthorIntro:
作者简介:王博(1995-),男,硕士,工程师 E-mail:447641988@qq.com 通信作者:岳战国(1986-),男,硕士,高级工程师 E-mail:784244507@qq.com
Reference:

 [1]张晨辉, 张利军, 郑筠, 等. 钛合金组织与性能调控工程实例[J]. 特种铸造及有色合金, 2021, 41(8): 1020-1023.


 

Zhang C H, Zhang L J, Zheng Y, et al. An engineering example of microstructure and properties control of titanium alloy [J]. Special Casting & Nonferrous Alloys, 2021, 41(8): 1020-1023.

 

[2]王向明, 刘文珽. 飞机钛合金结构设计与应用[M]. 北京:国防工业出版社, 2010. 

 

Wang X M, Liu W T. Aircraft Titanium Alloy Structure Design and Application [M]. Beijing: National Defense Industry Press, 2010.

 

[3]赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙:中南大学出版社, 2012.

 

Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformatiom and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012.

 

[4]童晋方, 冯治国, 江玉莲, 等. TB9钛合金芯杆冷镦成形模拟及实验研究[J]. 锻压技术, 2023, 48(8): 32-40.

 

Tong J F, Feng Z G, Jiang Y L, et al. Simulation and experiment study on cold heading for TB9 titanium alloy core rod[J]. Forging & Stamping Technology, 2023, 48(8): 32-40.

 

[5]黄伟, 古忠涛, 陈薄, 等. TC4钛合金连接板抽芯铆接数值模拟[J]. 锻压技术, 2023, 48(11): 95-103. 

 

Huang W, Gu Z T, Chen B, et al. Numerical simulation on core riveting for TC4 titanium alloy connecting plate [J]. Forging & Stamping Technology, 2023, 48(11): 95-103.

 

[6]赵满圆, 闫晓东, 贺金宇, 等. GH4169双层管填充绕弯畸变的数值模拟研究[J]. 稀有金属, 2023, 47(7): 967-976.

Zhao M Y, Yan X D, He J Y, et al. Numerical simulation on bending distortion of GH4169 doublelayer filled tube [J]. Chinese Journal of Rare Metals, 2023, 47(7): 967-976.

 

[7]GJB 2218A—2018, 航空用钛及钛合金棒材和锻坯规范[S].

 

GJB 2218A—2018, Specification of titanium and titanium alloy bars and forging stocks for aircraft [S].

 

[8]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

 

[9]GB/T 228.2—2015, 金属材料拉伸试验第2部分:高温试验方法[S].

 

GB/T 228.2—2015, Metallic materials—Tensile testing—Part 2:Method of test at elevated temperature [S].

 

[10]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].

 

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method [S].

 

[11]中国机械工程学会. 锻压手册:锻造 第1卷[M]. 3版.北京:机械工业出版社, 2007.

 

Chinese Mechanical Engineering Society. Forging Handbook:Forging Volume 1 [M]. 3rd Edition.Beijing:China Machine Press, 2007.

 

[12]GB/T 23605—2020, 钛合金β转变温度测定方法[S].

 

GB/T 23605—2020, Determination of β transus temperature of titanium alloys [S].

 

[13]GB/T 38964—2020, 钛合金等温锻造工艺规范[S].

 

GB/T 38964—2020, Isothermal forging for titanium alloy—Technological specification [S].

 

[14]HB/Z 199—2005, 钛合金锻造工艺[S].

 

HB/Z 199—2005, Forging techniques of titanium alloy [S].

 

[15]张智, 杨佩, 文娜, 等. TC11钛合金棒材锻造工艺的研究[J]. 热加工工艺, 2017, 46(15): 163-172.

 

Zhang Z, Yang P, Wen N, et al. Study on forging process of TC11 titanium alloy bar [J]. Hot Working Technology, 2017, 46(15): 163-172. 

 

[16]王巧云, 张耀虎. 大型钛合金锻件的研制[J]. 西安航空学院学报, 2002, 20(3): 60-62.

 

Wang Q Y, Zhang Y H. Study of new material TC4 forging [J]. Journal of Xi′an Aerotechnical College, 2002, 20(3): 60-62.

 

[17]GJB 2744A—2019, 航空用钛及钛合金自由锻件和模锻件规范[S].

 

GJB 2744A—2019, Specification for titanium and titanium alloy forgings for aerospace [S]. 

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com