Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Multi-directional die forging process and billet optimization design on VL-type spherical cage cylinder shell
Authors: Xu Xiao1  Fu Kuikui1  Gong Pan2  Wang Yongxiao3  Hu Honglei1  Li Zhisong1  Liu Zhao1  Wang Xin1 
Unit: 1.College of Machine  Shanghai Dianji University 2. State Key Laboratory of Materials Processing and Die & Mould Technology  School of Materials Science and Engineering   Huazhong University of Science and Technology   3. School of Materials Science and Engineering  Shandong University of Technology 
KeyWords: VL-type spherical cage cylinder shell  retractable mandrel  multi-directional die forging  automatical demoulding  flash 
ClassificationCode:TG316
year,vol(issue):pagenumber:2024,49(4):26-34
Abstract:

 There are six intersecting inclined inner spherical grooves on the inner surface of VL-type spherical cage cylindrical shell, which make it difficult to demold in the traditional die forging process. Therefore, a forging die with a retractable tapered wedge mandrel and the multi-directional die forging press with vertical hydraulic cylinder and three horizontal hydraulic cylinders were designed, and the precision forming of multi-directional die forging and the automatic demolding were realized. At the same time, the numerical simulation analysis on the material flow behavior and the change of field in the process were analyzed by Deform to finish the optimization design of billet shape, and the multi-directional die forging experiments were carried out to verify the simulation results. The results indicate that the petal-shaped billet with axial waves can effectively control the radial and axial flashes of the forgings, and the extra material in the inner spnerical groove is extruded to the trough of wavy billet during forging, which improves the forming precision of forgings, decreases the forging load, and effectively reduce the subsequent finishing time of forgings. Thus, the process flow is relatively simple and easy to accomplish, which provides a new way for forging production of parts with complicated internal structure and difficult demolding.

Funds:
上海市科委地方院校能力建设资助项目(21010500800, 23010501100,22010501000);国家自然科学基金资助项目(52205393);山东省自然科学基金资助项目(ZR2022QE263);上海市启明星扬帆项目(23YF1413900)
AuthorIntro:
作者简介:徐潇(1992-),女,博士,讲师 E-mail: xuxiao@sdju.edu.cn 通信作者:王欣(1961-),男,博士,教授 E-mail:x.wang@forgewang.com
Reference:

 [1]Cardozo W S, Weber H I.A compact formulation for constant velocity joint kinematics[J].Mechanism and Machine Theory,2018,121:1-14.


 

[2]安自仁.等速万向节滑套多工序温冷复合精密成形技术研究[D]. 合肥:合肥工业大学,2018.

 

An Z R. Research on Multiprocess Temperaturecooled Composite Precision Forming Technology of Constant Velocity Universaljoint Sliding Sleeve [D]. Hefei:Hefei University of Technology,2018.

 

[3]宋银生.VL星形套成形工艺及模具设计[J].锻造与冲压,2020,(9):37-40.

 

Song Y S. Forming process and die design of VL star sleeve[J].Forging & Metalforming, 2020,(9):37-40. 

 

[4]陈熠道,邓小龙.汽车等速万向节滑套反挤压工序分析及凸模结构优化[J].锻压技术,2022,47(7):206-212.

 

Chen Y D,Deng X L. Backward extrusion process analysis and punch structure optimization of sliding sleeve for automobile constant velocity universal joint[J].Forging & Stamping Technology, 2022,47(7):206-212.

 

[5]Zhu X X, Xu Y P, Zhou W X, et al. Research on parameter design method and motion characteristics of a ball cage flexible joint[J].Energies,2022, 15(20):7591-7591.

 

[6]陈凌翔, 李月超.汽车六角球头冷锻工艺优化与数值仿真[J].材料科学与工艺, 2020, 28(5):75-82.

 

Chen L X,Li Y C. Optimization and numerical simulation of cold forging process for automobile hexagonal ball head [J].Materials Science and Technology, 2020,28(5):75-82.

 

[7]郭嘉晨.基于数值模拟的等速万向节球笼锻造工艺优化[D].镇江,江苏大学,2018.

 

Guo J C. Forging Process Optimization of Constant Velocity Universaljoint Ball Cage Based on Numerical Simulation [D].Zhenjiang: Jiangsu University,2018.

 

[8]熊戈.汽车等速万向节的参数化设计与研究[D]. 武汉:武汉理工大学,2014.

 

Xiong G. Parametric Design and Research of Automotive Constant Velocity Universal Joint [D]. Wuhan:Wuhan University of Technology,2014.

 

[9]Hua H P, Zhou Y, Li X X, et al. Variation of wear behavior of H13 steel sliding against differenthardness counterfaces [J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2015,229(6):763-770.

 

[10]段园培,张海涛,黄仲佳,等.基于DEFORM-3D的支撑销冷挤压成形数值模拟[J].热加工工艺,2013,42(9):125-130.

 

Duan Y P, Zhang H T, Huang Z J, et al. Numerical simulation of cold extrusion forming of support pin based on DEFORM-3D[J] Hot Working Technology, 2013,42(9):125-130.

 

[11]陈保山, 逯云杰. 一种连接传动件的锻造工艺仿真及优化[J]. 锻压技术, 2023, 48(3): 20-26.

 

Chen B S, Lu Y J. Simulation and improvement on forging process for a connecting transmission part[J]. Forging & Stamping Technology,2023,48(3):20-26.

 

[12]武欢,陈康,代先东,等.基于Deform二次开发的连杆折叠缺陷预测及优化[J].锻压技术,2022,47(2):12-18.

 

Wu H, Chen K, Dai X D, et al. Prediction and optimization on folding defect for connecting rod based on secondary development of Deform[J]. Forging & Stamping Technology, 2022,47(2):12-18.

 

[13]牛海侠,甘国强,李萍,等.基于DEFORM-3D的7075铝合金筒型件半固态成形有限元模拟及试验验证[J].稀有金属材料与工程,2022,51(5):1697-1704.

 

Niu H X, Gan G Q, Li P, et al. Finite element simulation and experimental verification of semisolid forming of 7075 aluminum alloy cylinder based on DEFORM-3D[J]. Rare Metal Materials and Engineering, 2022,51(5):1697-1704.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com