Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of rolling temperature on microstructure and properties of cryogenically treated AZ31 magnesium alloy
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2024,49(1):134-141
Abstract:

 The microstructure and properties of cryogenically treated AZ31 magnesium alloy rolled at different temperatures were studied by metallographic microscopy, X-ray diffractometry and Vickers hardness tester. The results show that with the increasing of rolling temperature, the chilling effect experienced by the magnesium alloy during the cryogenic treatment after rolling is stronger, and the shrinkage of magnesium alloy is greater. When the rolling temperature is 180-300 ℃, the grain size of magnesium alloy becomes smaller with the increasing of rolling temperature, the number of twins increases, accompanied by the precipitation of the second phase, and the basal texture of magnesium alloy is gradually weakened. When the rolling temperature rises to 360 ℃, the basal texture is strengthened again. The hardness increases first and then decreases with the increasing of rolling temperature, and the hardness is as high as 78.9 HV at 300 ℃, which is mainly attributed to the effect of fine grain strengthening and second phase strengthening. When the rolling temperature reaches 420 ℃, the properties of magnesium alloy drop significantly due to the cracks appearing along the adiabatic shear band inside the magnesium alloy. 

Funds:
国家自然科学基金资助项目(52174362,51975207);湘潭市创建国家创新型城市建设专项项目(CG-YB20221043);盐城市“黄海明珠人才计划”领军人才项目
AuthorIntro:
作者简介:毛睿成(1995-),男,硕士研究生 E-mail:409353178@qq.com 通信作者:卢立伟(1983-),男,博士,教授 E-mail:cqulqyz@126.com
Reference:

 [1]  武卫民,孙晨宇. 挤锻复合成形汽车高强镁合金的组织与性能[J]. 锻压技术,2022,47(12):27-30.


Wu W M, Sun C Y. Organization and properties of extrusion-forging composite formed automotive high-strength magnesium alloy[J]. Forging & Stamping Technology, 2022, 47(12): 27-30.

[2]  胡美些,狄石磊. 坯料预热方式对AZ80镁合金轮毂组织和性能的影响[J]. 锻压技术,2022,47(9):39-44.

Hu M X, Di S L. Effect of billet preheating mode on the organization and properties of AZ80 magnesium alloy wheels[J]. Forging & Stamping Technology, 2022, 47(9): 39-44.

[3]  李庆芬,邓彬,吴远志,等. 轧制应变量对AZ31镁合金组织与腐蚀性能的影响[J]. 锻压技术,2022,47(8):152-157.

Li Q F, Deng B, Wu Y Z, et al. Effect of rolling strain on the organization and corrosion properties of AZ31 magnesium alloy[J]. Forging & Stamping Technology, 2022, 47(8): 152-157.

[4]  卢立伟,康伟,黎小辉,等. 时效处理对Mg-Zn-Gd-Er稀土镁合金的组织和力学性能的影响[J]. 稀有金属,2022,46(9):1153-1162.

Lu L W, Kang W, Li X H, et al. Microstructure and mechanical properties of Mg-Zn-Gd-Er rare earth magnesium alloy via aging treatment[J]. Chinese Journal of Rare Metals, 2022, 46(9): 1153-1162.

[5]  Che B, Lu L W, Zhang J L, et al. Effects of cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy rolled at different paths[J]. Materials Science and Engineering A, 2022, 832: 142475.

[6]  Liu J W, Li G F, Chen D, et al. Effect of cryogenic treatment on deformation behavior of as-cast AZ91 Mg alloy[J]. Chinese Journal of Aeronautics, 2012, 25(6): 931-936.

[7]  Jiang Y, Chen D, Chen Z H, et al. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy[J]. Materials and Manufacturing Processes, 2010, 25(8): 837-841.

[8]  Mónica P, Bravo P M, Cárdenas D. Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties[J]. Journal of Materials Processing Tech., 2017, 239: 297-302.

[9]  Gong X Y, Wu Z S, Zhao F, et al. Effect of deep cryogenic treatment on the microstructure and the corrosion resistance of AZ61 magnesium alloy welded joint[J]. Metals, 2017, 7(5): 179.

[10]Asl K M, Tari A, Khomamizadeh F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy[J]. Materials Science and Engineering A, 2009, 523(1): 27-31. 

[11]Amini K, Akhbarizadeh A, Javadpour S. Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91[J]. Materials and Design, 2014, 54: 154-160. 

[12]Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J]. Corrosion Science, 2012, 57: 192-201.

[13]张丁非,戴庆伟,胡耀波,等. 镁合金板材轧制成型的研究进展[J]. 材料工程, 2009,(10): 85-90.

Zhang D F, Dai Q W, Hu Y B, et al. Advances in rolling and forming of magnesium alloy plates[J]. Materials Engineering, 2009, (10): 85-90.

[14]Lu L W, Liu C, Zhao J, et al. Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method[J]. Journal of Alloys and Compounds, 2015, 628: 130-134.

[15]许芳艳. 轧制板材镁合金AZ31的再结晶行为[D]. 长沙:湖南大学, 2006.

Xu F Y. Recrystallization Behavior of Rolled Sheet Magnesium Alloy AZ31[D]. Changsha: Hunan University, 2006.

[16]Fatemi-Varzaneh S M, Zarei-Hanzaki A, Cabrera J M. Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509(9): 3806-3810. 

[17]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica, 1982, 30(10): 1909-1919.

[18]Guo F, Zhang D F, Yang X S, et al. Evolution of microstructure and weave of AZ31 magnesium alloy during large strain hot rolling [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 14-21.

[19]毛萍莉, 刘超, 刘正, 等. AZ31镁合金中绝热剪切带的组织演变规律[J]. 稀有金属材料与工程, 2015, 44(5): 1181-1184. 

Mao P L, Liu C, Liu Z, et al. Organizational evolution of the adiabatic shear zone in AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1181-1184.

[20]张宇. 轧制AZ31镁合金剪切带形成机理的研究[D]. 沈阳:东北大学, 2013.

Zhang Y. Study on the Formation Mechanism of Shear Zone of Rolled AZ31 Magnesium Alloy[D]. Shenyang: Northeastern University, 2013.

[21]陈鼎, 夏树人, 姜勇, 等. 镁合金深冷处理研究[J]. 湖南大学学报:自然科学版, 2008, 35(1): 62-65.

Chen D, Xia S R, Jiang Y, et al. Study on deep cooling treatment of magnesium alloy[J]. Journal of Hunan University: Natural Science Edition, 2008, 35(1): 62-65.

[22]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia, 2004, 51(9): 881-885.

[23]郭超凡. 深冷处理对AZ31镁合金组织及性能的影响研究[D]. 长春:吉林大学, 2019. 

Guo C F. Study on the Effect of Deep Cooling Treatment on the Organization and Properties of AZ31 Magnesium Alloy[D]. Changchun: Jilin University, 2019.

[24]Fan Y T, Lu L W, Zhou T. et al. Improvement of the microstructure and microhardness of AQ80 magnesium alloy by repeated upsetting-extrusion[J]. Metals and Materials International, 2023, 29(10):3052-3065.

[25]Sadr M H, Jafarzadeh H. Characterization of AZ91 magnesium alloy processed by cyclic contraction/expansion extrusion using the experimental and micromechanical cellular automaton finite element approach[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(11): 1417-1430.

[26]Kang W, Lu L W, Feng L B, et al. Effects of pre-aging on microstructure evolution and deformation mechanisms of hot extruded Mg-6Zn-1Gd-1Er Mg alloys[J]. Journal of Magnesium and Alloys, 2023, 11(1): 317-328.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com