Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of process parameters on plastic properties for non-mandrel hot spinning of TC4 titanium alloy high-pressure gas cylinder
Authors: Wei Wei1  Luo Xiong1  Fan Junming2  Chen Liubin2  Wu Mingxia3  Tang Kai3 
Unit: 1.Chengdu Special Equipment Inspection and Testing Institute 2.Chengdu Great High Pressure Vessel Co.  Ltd. 3.School of Manufacturing Science & Engineering Sichuan University 
KeyWords: titanium alloy  high-pressure gas cylinder  hot spinning  feed ratio  spinning temperature 
ClassificationCode:TG316.3
year,vol(issue):pagenumber:2023,48(12):142-150
Abstract:

 The non-mandrel hot spinning process of TC4 titanium alloy high-pressure gas cylinders under different process parameter conditions was simulated by DEFORM finite element software, and the influences of spinning temperature, feed ratio and roller fillet radius on the plastic properties during the forming process were studied. The results show that when the spinning temperature increases, the equivalent stress on the gas cylinder surface during the forming process decreases, but the equivalent strains at each sampling point are basically the same at different temperatures. When the feed ratio decreases, the equivalent strain increases, and the effect on the equivalent stress is significant. When the feed ratio is 3 mm·r-1, the stress value changes are relatively uniform between the sampling points. The smaller the fillet radius of roller, the greater the reduction degree of equivalent stress in the depth direction, the change of the equivalent stress caused by the roller on the surface of gas cylinder is great when the radius R is 60 and 80 mm, and the change of the equivalent stress is small when R is 100 mm and the workpiece has better uniformity. In conclusion,  the optimal hot spinning process parameters for TC4 titanium alloy high-pressure gas cylinders are the temperature of 950 ℃, the feed ratio of 3 mm·r-1, and the roller fillet radius of 100 mm.

Funds:
AuthorIntro:
作者简介:魏巍(1982-),男,硕士,高级工程师 E-mail:18708185844@163.com 通信作者:唐凯(1992-),男,博士研究生 E-mail:tangkai0516@163.com
Reference:

 [1]李立善, 于斌. TC4钛合金球形高压气瓶赤道缝电子束焊接研究[J]. 航天制造技术, 2009, (6):30-32.


Li L S, Yu B. Study of electron beam welding process for high-pressure sphere tank of TC4 titanium alloy [J]. Aerospace Manufacturing Technology, 2009, (6):30-32.

[2]于斌, 靳庆臣, 何俊,等. 高压球形气瓶焊缝结构设计与焊接工艺[J]. 宇航材料工艺, 2010, 40(4):30-32.

Yu B, Jin Q C, He J, et al. Welding line design and welding process of sphere high-pressure vessel[J]. Aerospace Materials & Technology, 2010, 40(4):30-32.

[3]那晓菲, 王卫民, 樊亚军,等. 超塑球形气瓶用TC4钛合金管材的制备工艺[A]. 第十四届全国钛及钛合金学术交流会论文集(下册)[C].上海:科学出版社,2010.

Na X F, Wang W M, Fan Y J, et al. Preparation technique of TC4 alloy pipe used for superplastic gas bottle[A]. Proceedings of the 14th National Academic Exchange Conference on Titanium and Titanium Alloys (Volume II)[C].Shanghai: Science Press,2010.

[4]张海, 欧阳瑞洁, 张永红,等. 钛合金气瓶疲劳试验壳体开裂失效分析[J]. 压力容器, 2021, 38(7): 77-80,86.

Zhang H, Ouyang R J, Zhang Y H, et al. Cracking failure analysis of a titanium alloy pressure vessel in hydraulic fatigue test [J]. Pressure Vessel Technology, 2021, 38(7): 77-80,86.

[5]陆子川, 张绪虎, 微石,等. 航天用钛合金及其精密成形技术研究进展[J]. 宇航材料工艺, 2020, 50(4):1-7.

Lu Z C, Zhang X H, Wei S, et al. Research progresses of titanium alloys and relevant precision forming technology for the aerospace industry [J]. Aerospace Materials & Technology, 2020, 50(4):1-7.

[6]方秀荣, 王自亮, 杨锦辉,等. TC4钛合金锻件疲劳寿命分析及其仿真模型修正[J]. 锻压技术, 2022, 47(6):1-9.

Fang X R, Wang Z L, Yang J H, et al. Fatigue life analysis and simulation model modification on TC4 titanium alloy forgings [J]. Forging & Stamping Technology, 2022, 47(6):1-9.

[7]Tseng J C, Huang W C, Chang W, et al. Deformations of Ti-6Al-4V additive-manufacturing-induced isotropic and anisotropic columnar structures[J]. Additive Manufacturing, 2020, 35:101322.

[8]Su J Q, Wang J Y, Mishra R S, et al. Microstructure and mechanical properties of a friction stir processed Ti-6Al-4V alloy[J]. Materials Science & Engineering A, 2013, 573:67-74.

[9]Bai J J, Li W, Liang Y L, et al. High temperature compressive deformation behavior of TC4 titanium alloy[J]. Heat Treatment of Metals, 2017, 42(5):121-126.

[10]田辉, 黄海青, 陈国清,等. 强旋工艺参数对TC4钛合金筒形件旋压成形的影响[J]. 航天制造技术, 2009,(5):14-17.

Tian H, Huang H Q, Chen G Q, et al. Effects of power spinning processing parameters on cylinders of TC4 alloy [J]. Aerospace Manufacturing Technology, 2009,(5):14-17.

[11]Wang B H, Cheng L, Li D C. Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J]. International Journal of Fatigue, 2022, 156: 106668.

[12]Liu Y D, Zhou Y S, Shi W T. Experimental research on variable parameter forming process for forming specimen of TC4 titanium alloy by selective laser melting[J]. Materials, 2022, 15(18):6408-6408.

[13]Lyu N, Liu D, Hu Y, et al. Research on the evolution of residual stresses in the manufacturing process of TC4 alloy profile rolled ring[J]. Engineering Failure Analysis, 2022, 137: 106269.

[14]陈胜川,李建锋,朱宝辉,等.径向锻造加工率对TC4钛合金管材组织与性能的影响[J/OL].热加工工艺,2024(13):134-137[2023-11-06].https://doi.org/10.14158/j.cnki.1001-3814.20212970. 

Chen S Q, Li J F, Zhu B H, et al. Effect of radial forging processing rate on microstructure and properties of TC4 titanium alloy tube [J/OL]. Hot Working Technology, 2024(13):134-137[2023-11-06].https://doi.org/10.14158/j.cnki.1001-3814. 20212970.

[15]何宇鑫, 马玉娥. 高温下TC4合金的黏塑性本构模型研究[J]. 西北工业大学学报, 2023, 41(1): 65-72.

He Y X, Ma Y E. The viscoplastic constitutive model of TC4 alloy under high temperature [J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 65-72.

[16]王双礼, 张起, 乔恩利, 等. 退火温度对TC4钛合金显微组织和力学性能的影响[J]. 热处理, 2023, 38(1):33-36.

Wang S L, Zhang Q, Qiao E L, et al. Effects of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy[J]. Heat Treatment, 2023, 38(1):33-36.

[17]王情情, 刘战强, 程延海,等. 基于多尺度晶粒细化演变的TC4加工表层硬度预测[J]. 华南理工大学学报:自然科学版, 2023, 51(2):35-46.

Wang Q Q, Liu Z Q, Cheng Y H, et al. Hardness prediction of TC4 machined surface based on the evolution of multi-scale grain refinement [J]. Journal of South China University of Technology: Natural Science Edition, 2023, 51(2):35-46.

[18]李东宽, 郭岩, 杨立新,等. TC4钛合金两相区的热变形行为及微观组织[J]. 铸造技术, 2022,43(2):114-119.

Li D K, Guo Y, Yang L X, et al. Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region[J]. Foundry Technology, 2022,43(2):114-119.

[19]李洪波, 王琳, 田锋,等. TC4钛合金薄壁筒形件反挤压成形及微观组织演化[J]. 塑性工程学报, 2021, 28(10):19-26.

Li H B, Wang L, Tian F, et al. Backward extrusion and microstructure evolution of TC4 titanium alloy thin-walled cylinders [J]. Journal of Plasticity Engineering, 2021, 28(10):19-26.

[20]刘若凡, 于忠奇, 赵亦希,等. 法兰约束条件下铝合金杯形件的旋压成形性能[J]. 上海交通大学学报, 2019, 53(1):105-110.

Liu R F, Yu Z Q, Zhao Y X, et al. Formability of flange constraint spinning for aluminum cup part [J]. Journal of Shanghai Jiaotong University, 2019, 53(1):105-110.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com