Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Effect of rib structure on cross-section distortion in waveform stamping for micro-channel thin-walled flat tube
Authors: Zhu Yingxia  Chen Wei  Li Hui  Guo Yuan 
Unit: School of Mechanical Engineering  Jiangsu University 
KeyWords: micro-channel  corrugated flat tube  cross-section distortion  rib structure  stamping 
ClassificationCode:TG386
year,vol(issue):pagenumber:2023,48(12):121-128
Abstract:

 In order to optimize the structure and size of cross-section rib for micro-channel corrugated flat tube, the cross-section distortion rules under fifteen size-type models during the stamping process were studied by the finite element simulation, and the optimal structural style to resist the cross-section distortion was obtained. It is found that the average cross-section distortion rate of wave crest cross-section first increases and then decreases with the increasing of longitudinal rib height, and with the increasing of transverse rib width, the average cross-section distortion rate of wave crest cross-section and edge hole longitudinal cross-section decreases. When the longitudinal and transverse ribs are connected to the cross-section respectively, the cross-section distortion rate is minimum. Compared with the transverse rib, the cross-section distortion rate is more sensitive to the longitudinal rib. The smaller the number of longitudinal rib N1, the more conducive to reduce the cross-section distortion rate. When N1=0, the bigger the number of transverse rib N2, the more conducive to reduce the distortion rate. However, when N1≥1 and the value is fixed, the smaller N2, the more conducive to reduce the distortion rate. Among the fifteen size-style models, the corresponding cross-section distortion rate of model IV-1(h=0,N1=0, N2=2, transverse rib width of 0.6 mm) is the smallest.

Funds:
国家自然科学基金资助项目(51601070, 51875263);广东省精密装备与制造技术重点实验室开放项目(PEMT202102);江苏大学企业单位委托科技项目(HX20220700)
AuthorIntro:
作者简介:朱英霞(1986-),女,博士,副教授 E-mail:xia166109@163.com 通信作者:陈炜(1965-),男,博士,教授 E-mail:chen_wei@mail.ujs.edu.cn
Reference:

 [1]Gupta S K, Verma H, Yadav N. A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy[J]. Materials Today: Proceedings, 2022, 54: 579-589.


[2]Meng B, Wan M, Zhao R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review [J]. Chinese Journal of Aeronautics, 2021, 34(2): 79-103.


[3]汤宇轩, 夏国栋, 宗露香, . 间断型波纹微通道内沸腾换热特性研究[J]. 工程热物理学报,2020, 41(12): 3008-3013.


Tang Y X, Xia G D, Zong L X, et al. Investigation of boiling heat transfer characteristics in intermittent wavy microchannels [J]. Journal of Engineering Thermophysics, 2020, 41(12): 3008-3013.


[4]吕志敏, 江豪. 5052铝合金薄型封板冲压缺陷仿真分析[J]. 锻压技术, 2022, 47(9): 99-104181.


Lyu Z M, Jiang H. Simulation analysis on stamping defects for 5052 aluminum alloy thin sealing plate [J]. Forging & Stamping Technology, 2022, 47(9): 99-104181.


[5]程传峰, 金明, 王项如, . 3003-H14 铝合金微通道扁管波形冲压的摩擦边界条件优化[J]. 材料科学与工艺, 2023, 31(1): 63-70.


Cheng C F, Jin M, Wang X R, et al. Optimization of friction boundary conditions for wave stamping of 3003-H14 aluminum alloy micro-channel flat tube [J]. Materials Science and Technology, 2023, 31(1): 63-70.


[6]Zhu Y X, Wan M M, Wang Y, et al. Size effect mechanism of cross-section deformation and section hollow coefficient-bending degree of the thin-walled composite bending tube [J].Materials & Design, 2021, 212: 110274.


[7]Liu C M, Liu Y L. Cross-sectional deformation behavior of double-ridged rectangular tube with fillers in different stages of H-typed bending [J]. Chinese Journal of Aeronautics, 2020, 33(6): 1799-1811.


[8]Wu X W, Mo C M, Li X X, et al. Experiment investigation on optimization of cylinder battery thermal management with microchannel flat tubes coupled with composite silica gel [J]. Journal of Energy Storage, 2022, 56: 105871.


[9]Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh M J. Intensified single-phase forced convective heat transfer with helical-twisted tube in coil heat exchangers [J]. Annals of Nuclear Energy, 2021, 154: 108108.


[10]雷旭升, 王挺, 梁建宏, . 极地科考小型无人飞行器[J]. 北京航空航天大学学报, 2009, 35(3): 267-271.


Lei X S, Wang T, Liang J H, et al. Small unmanned aerial vehicle for polar research [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 267-271.


[11]任恒, 房景仕, 张根烜. 微通道液冷冷板散热特性研究[J]. 雷达科学与技术, 2021, 19(3): 343-348.


Ren H, Fang J S, Zhang G X. Study on heat transfer characteristics of micro-channel cold-plates [J]. Radar Science and Technology, 2021, 19(3): 343-348.


[12]裘腾威, 刘敏, 刘源,等. 新型多孔铜微通道散热器研制[J]. 低温与超导, 2020, 48(8): 85-89.


Qiu T W, Liu M, Liu Y, et al. Development of a new type of porous copper microchannel heat sink [J]. Low Temperature and Superconductivity, 2020, 48 (8): 85-89.


[13]李贤睿. 微通道扁管热挤压成形过程及承压性能有限元仿真研究[D]. 上海:上海交通大学, 2017.


Li X R. Finite Element Simulation Study on Hot Extrusion Forming Process and Pressure-bearing Performance of Microchannel Flat Tube[D]. Shanghai:Shanghai Jiao Tong University, 2017.


[14]唐晟, 赵耀华, 刁彦华, . 多孔挤压铝扁管电子芯片热沉的热性能研究[J]. 山东科学, 2018, 31(3): 39-47.


Tang S, Zhao Y H, Diao Y H, et al. Thermal performance of a new kind of heat sink fabricated by flat aluminum multiport extruded tubes for electronic devices cooling [J]. Shandong Science, 2018, 31(3): 39-47.


[15]Yang X H, Tan S C, Ding Y J, et al. Flow and thermal modeling and optimization of micro/mini-channel heat sink [J]. Applied Thermal Engineering, 2017, 117: 289-296.


[16]Garcia J C S, Tanaka H, Giannetti N, et al. Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm [J]. Applied Thermal Engineering, 2022, 202: 117821.


[17]GB/T 33230—2016, 铝及铝合金多孔微通道扁管型材[S].


GB/T 33230—2016, Aluminum and aluminum alloy micro-multiport profiles[S].

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com