Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research and optimization on thermal forming process for a steam turbine blade
Authors: Luo Yingna 
Unit: School of Mechanical Engineering and Automation  Chongqing Industry Polytechnic College 
KeyWords: turbine blades  thermal compression  Hansel-Spittel model  thermal stamping  springback  thinning 
ClassificationCode:TG316;TG146.4
year,vol(issue):pagenumber:2023,48(12):63-71
Abstract:

 To improve the thermal stamping quality of a certain steam turbine blade and reduce trial-and-error costs, the stress-strain curves of X2Cr11 steel at different temperatures and strain rates were obtained by isothermal thermal compression tests, and a high-precision Hansel-Spittel constitutive model was constructed. Isothermal compression results indicate that the temperature and strain rate have significant effects on stress in material. Then,based on the established constitutive equation, a numerical simulation model of thermal forming for a specific steam turbine blade was constructed. The problem existing in the original process was preliminarily analyzed including uneven sheet thickness and considerable springback effect. Finally, an optimization strategy based on Latin hypercube, finite element simulation, Kriging model and genetic algorithm was proposed. The maximum springback amount is successfully controlled within 1.5 mm, and the maximum thinning rate is controlled within 3.3%. Production trial production shows that this strategy significantly improves the forming quality of steam turbine blades and reduces the trial-and-error costs. Thus, the research results provide an effective guarantee for the high-quality production of steam turbine blades.

Funds:
重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1029);重庆市教育委员会科学技术研究计划青年项目(KJQN202203204)
AuthorIntro:
作者简介:罗应娜(1979-),女,学士,副教授 E-mail:lyn3796@163.com
Reference:

 [1]朱姣, 钟振前, 翟战江, . 叶片开裂失效分析[J]. 物理测试, 2022, 40(1): 46-50.


Zhu J, Zhong Z Q, Zhai Z J, et al. Failure analysis of blade cracking[J]. Physics Examination and Testing, 2022, 40(1): 46-50.


[2]Li X P, Han R H, Xie Y S, et al. Analysis of failure causes of 0Cr19Ni9 blade crack [J]. Materials Science-Medziagotyra, 2022, 28(3): 309-314.


[3]Liu F, Lu Y Z. Numerical simulation of precision forming for blade rotor based on DEFORM [J]. Applied Mechanics and Materials, 2011, 130-134: 2388-2391.


[4]Xiang R, Zhou J, Xiong Y, et al. Hot forming of complex surface of hollow blade back arc based on drawing process [J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):4015-4021.


[5]Gan W, Wagoner R H. Die design method for sheet springback [J]. International Journal of Mechanical Sciences2004, 46(7): 1097-1113.


[6]袁飞, 吕彦明, 胡学超, . 汽轮机叶片精锻模具预补偿方法研究[J]. 现代制造工程, 2020,(5): 113-118,112.


Yuan F, Lyu Y M, Hu X C, et al. Research on pre-compensation method of steam turbine blade precision forging die [J]. Modern Manufacturing Engineering, 2020,(5): 113-118,112.[7]张丰收, 马有福, 降文鹤, . 汽轮机叶片锻压成形参数的灰色多目标优化[J]. 机械设计与制造, 2017,(9): 149-151.


Zhang F S, Ma Y F, Jiang W H, et al. The Optimization for turbine blade forging process parameters based on grey theory [J]. Machinery Design & Manufacture, 2017,(9): 149-151.


[8]徐永锋, 高振桓, 杨明, . 锻造对汽轮机叶片钢力学性能的影响[J]. 东方汽轮机, 2017,(3): 42-46,57.


Xu Y F, Gao Z H, Yang M, et al. Influence of forging on mechanical properties of turbine blade steel [J]. Dongfang Tubrine, 2017,(3): 42-46,57.


[9]刘俊, 盛伟, 施瑞华, . 汽轮机叶片锻造成形数值模拟与工艺优化[J]. 金属加工(热加工), 2016,(11): 38-40.


Liu J, Sheng W, Shi R H, et al. Numerical simulation and process optimization of steam turbine blade forging[J]. MW Metal Forming, 2016,(11): 38-40.


[10]陈学文, 周会军, 陈天安. 基于Hansel-Spittel模型的45Cr4NiMoV合金热变形行为[J]. 河南科技大学学报:自然科学版, 2015, 36(5):1-4,14,117.


Cheng X W, Zhou H J, Chen T A. Hot deformation behavior of 45Cr4NiMoV alloy steel based on Hansel-Spittel model[J]. Journal of Henan University of Science and Technology: Natural Science, 2015, 36(5):1-4,14,117.


[11]陈学文, 杨喜晴, 王纳纳. GCr15SiMn钢的温变形行为及Hansel-Spittel流变应力模型[J]. 金属热处理, 2018, 43(5):34-38.


Chen X W, Yang X Q, Wang N N. Warm deformation behavior and Hansel-Spittel of constitutive model of GCr15SiMn steel[J]. Heat Treatment of Metals, 2018, 43(5):34-38.


[12]高双明,矫阿娇,崔礼春. 某轿车后门内板冲压工艺及整形模具结构优化[J]. 锻压技术,2021,46(1):65-69.


Gao S MJiao A JCui L C. Stamping process and structure optimization of sizing die for inner panel of a car rear door [J]. Forging & Stamping Technology2021,46(1):65-69.


[13]胡开元,王雷刚. 基于响应面法与灰狼优化算法的壳体拉深成形模具优化设计[J]. 锻压技术,2022,47(6):244-250.


Hu K YWang L G. Optimization design on shell deep drawing die based on response surface methodology and grey wolf optimization algorithm[J]. Forging & Stamping Technology,2022,47(6):244-250.


[14]王慧怡,王岫鑫,刘学. 汽车发动机罩的神经网络-强繁殖NSGA-Ⅱ算法冲压参数优化[J]. 锻压技术,2022,47(7):100-106.


Wang H YWang X XLiu X. Parameter optimization on stamping of neutral network-strong reproduction NSGA-II algorithm for automobile engine hood[J]. Forging & Stamping Technology,2022,47(7):100-106.


[15]徐杰. 基于克里金模型和多目标遗传算法的转向节模具参数优化[J]. 锻压技术,2022,47(7):213-219.


Xu J. Optimization on steering knuckle mold parameters based on Kriging model and multi-objective genetic algorithm[J]. Forging & Stamping Technology,2022,47(7):213-219.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com