Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on temperature rise for friction spinning based on response surface method
Authors: Sun Shouyi Wang Jin Li Baoge Cao Gaowei Zhang Xinyue 
Unit: School of Mechanical and Automotive Engineering Qingdao University of Technology 
KeyWords: friction spinning temperature rise change  response surface method feeding rate  spindle speed  forming angle of tapered part 
ClassificationCode:TG386
year,vol(issue):pagenumber:2023,48(12):35-40
Abstract:

 A Box-Behnken experimental design was conducted to investigate the influence laws of process parameters such as feeding rate, spindle speed and forming angle of tapered part on the temperature rise in friction spinning process and the interaction between these factors. Based on the experimental design and temperature measurement experiments, the response surface model of the temperature rise relative to the process parameters such as feeding rate, spindle speed and forming angle of tapered part during the aluminum alloy friction spinning process was established, and the causes of different factors affecting the temperature rise in friction spinning were analyzed. The results show that the forming angle has the biggest influence on the temperature rise, followed by the spindle speed and the feeding rate, and the difference of process parameters could affect the value of spinning force and the distance that the tool travels on the workpiece, resulting in different processing temperatures. Changing the tool form in the spinning process can significantly increase the temperature of sheet and improve the formability of workpiece. When the feeding ratio is relatively small, not only the temperature rise in the processing process is increased, but the surface quality of the workpiece is also improved.

Funds:
山东省重点研发计划项目(2019GGX102023)
AuthorIntro:
作者简介:孙守義(1998-),男,硕士研究生 E-mail:1769420635@qq.com 通信作者:王进(1978-),男,博士,教授 E-mail:wangjin@qut.edu.cn
Reference:

 [1]Benjamin L,Anatolii A,Werner H,et al. Friction-spinning-Possibility of grain structure adjustment[J]. Procedia Engineering,2017,207: 1749-1754.


[2]Hess S,Lossen B, Biermann D, et al.Analysis of the surface roughness obtained in a friction spinning process based on empirical models [J]. The International Journal of Advanced Manufacturing Technology, 2014,74(9-12): 1655-1665.


[3]Homberg W, Hornjak D, Beerwald C.Manufacturing of complex functional craded workpieces with the friction-spinning process[J]. International Journal of Material Forming,2010, 3:943-946.


[4]Gao P F, Yan X G, Li F G, et al. Deformation mode and wall thickness variation in conventional spinning of metal sheets[J]. International Journal of Machine Tools and Manufacture,2021(prepublish).DOI:10.1016/J.IJMACHTOOLS.2021.103846.


[5]Werner H, Benjamin L, Struwe A. Friction-spinning-An innovative incremental forming process for the manufacturing of functional graded parts[J]. Key Engineering Materials,2013,2443: 554-557.


[6]Benjamin L, Werner H. Friction-spinning-Influence of tool and machine parameters on the surface texture[J]. Key Engineering Materials,2015,3974: 651-653.


[7]Hess S, Lossen B, Biermann D, et al. Analysis of the surface roughness obtained in a friction spinning process based on empirical models[J]. The International Journal of Advanced Manufacturing Technology,2014,74: 9-12.


[8]温涛,陈永来,杜玥,.旋压变形对2195铝锂合金组织和性能的影响[J].载人航天,2020,26(6):717-722.


Wen T, Chen Y L, Du Y, et al. Spinning deformation on the microstructure and mechanical properties of 2195 Al-Li alloy[J]. Manned Spaceflight, 2020, 26 (6): 717-722.


[9]陈永来,温涛,朱宏伟,.2195铝锂合金半球壳体旋压件制备与其组织性能研究[J].航天制造技术,2019(1):17-21.


Chen Y L, Wen T, Zhu H W, et al. Preparation of 2195 hemispherical shell spinning parts and their microstructure properties [J]. Aerospace Manufacturing Technology,2019(1):17-21.


[10]汪发春,聂兰启,陈永清,等.5A06铝合金壳体热旋成形工艺研究[J].模具制造,201919(8)29-32.


Wang F C, Nie L Q, Chen Y Q, et al. Study on hot spin forming process of 5A06 aluminum alloy shell [J]. Die & Mould Manufacture,2019,19(8):29-32.


[11]刘光军,丁桦,姜壹夫,等.6061铝合金热旋压变形不均匀性的数值模拟和实验研究[J].热加工工艺,2023,52(5):96-101.


Liu G J, Ding H, Jiang Y F, et al. Numerical simulation and experimental study on deformation inhomogeneity of 6061 aluminum alloy under hot spinning [J]. Hot Working Technology,2023,52(5):96-101.


[12]张晋辉,牛婷,温凯,等.铝合金锥形件强旋壁厚与旋压力分布研究[J].兵器装备工程学报,202041(8)239-243.


Zhang J H, Niu T, Wen K, et al. Study on strong wall thickness and rotation pressure distribution of aluminum alloy conical parts [J]. Journal of Ordnance Equipment Engineering,2020,41(8):239-243.


[13]潘和勇,樊文欣,李涵,等.基于响应曲面法的强力旋压锡青铜筒形件硬度研究[J].塑性工程学报,2019,26(1)240-244.


Pan H Y, Fan W X, Li H, et al. Research on hardness of strong spinning tin bronze cylinder parts based on response surface method [J]. Journal of Plasticity Engineering,2019,26(1):240-244.


[14]李宝阁,王进,张会,等.基于响应面法的无芯模成形精度研究[J].精密成形工程,202214(3)34-39.


Li B G, Wang J, Zhang H, et al. Research on forming precision of coreless die based on response surface method[J]. Journal of Netshape Forming Engineering,2022,14(3):34-39.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com