Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Kinetic parameters optimization on 400 kJ counterblow hydraulic die forging hammer
Authors: Gong Chengsi1  Liu Zhiqi1  Zhang Baocheng2  Zhu Wenyuan3 
Unit: 1.Taiyuan University of Science and Technology 2.Taizhong Yuye Changzhi Hydraulic Co.  Ltd. 3.Anyang Forging CNC Equipment Co.  Ltd. 
KeyWords: counterblow hydraulic die forging hammer  strike energy strike frequency speed of return stroke  vibration 
ClassificationCode:TS913+.3
year,vol(issue):pagenumber:2023,48(11):141-150
Abstract:

Due to the high working pressure large flow rate and harsh working conditions of the large-tonnage hydraulic die forging hammer, the system vibrates serious, the strike frequency is low, the striking energy is inaccurate, and the return speed is relatively high, resulting in serious cylinder collision phenomenon. Therefore, for CDKA series 400 kJ counterblow hammer, the optimization target evaluation function model was constructed by dynamic analysis, and multiple sets of values were selected for simulation research on three important parameters of pressure P, rodless cavity of hydraulic cylinder D and linkage cylinder diameter d4, and the parameters of high-pressure and large-flow rate hydraulic system for counterblow hammer were optimized. The results show that the optimized parameters conbination is P=17 MPa,D=Φ300 mm,d4=Φ60 mm. The strike frequency is improved of 55 times per min, the strike energy is stabilized, the final speed of return stroke is reduced of 1.86 m·s-1, and the degree of vibration is reduced.

Funds:
山西省专利转化专项计划项目(202202060)
AuthorIntro:
作者简介:弓成司(1997-),男,硕士研究生,E-mail:gtgt2580@163.com;通信作者:刘志奇(1972-),男,博士,教授,E-mail:liuzhiqi@tyust.edu.cn
Reference:

[1]金伟. 液压技术的研究现状及发展趋势[J]. 科技创新导报, 2020, 17(9): 97-98.


Jin W. Research status and development trend of hydraulic technology[J]. Science and Technology Innovation Herald, 2020, 17(9): 97-98.

[2]Bodurov P, Penchev T. Industrial rocket engine and its application for propelling of forging hammers[J]. Journal of Materials Processing Technology,2005,161(3):504-508.

[3]高峻,李淼泉. 精密锻造技术的研究进展与发展趋势[J]. 精密成形工程, 2015, 7(6): 37-43, 80.

Gao J,Li M Q. Research progress and development trend of the precision forging technology[J]. Journal of Netshape Forming Engineering, 2015, 7(6): 37-43, 80.

[4]罗文会.制约锻造自动化发展的因素分析[J].锻造与冲压,2021,516(19):20,22,24,26.

Luo W H. The factors restricting the development of forging automatization [J]. Forging & Metalforming, 2021,516(19):20,22,24,26.

[5]Hawryluk M. Review of selected methods of increasing the life of forging tools in hot die forging processes[J]. Archives of Civil and Mechanical Engineering,2016,16(4):845-866.

[6]陈桂芬. 一种锻造用数控全液压模锻锤[P].中国:CN217370269U,2022-09-06. 

Chen G F. A CNC fully hydraulic forging hammer for forging[P]. China: CN217370269U,2022-09-06.

[7]Huang X Q,Hu G,Meng Q K, et al. Impact performance optimization of a YDC valve-type double action hydraulic hammer[J]. Natural Gas Industry B, 2018, 5(5):425-433.

[8]张银娟,刘军,王永科.基于虚拟样机技术的液压模锻锤动态仿真研究[J].煤矿机械,2010,31(3):85-87. 

Zhang Y J, Liu J, Wang Y K. Research on dynamic simulation of hydraulic die forging hammer based on VPT [J]. Coal Mining Machinery,2010,31(3):85-87.

[9]刘军,张银娟,刘福海.液压模锻锤液压控制系统研究[J].锻压装备与制造技术,2010,45(1):68-71. 

Liu J, Zhang Y J, Liu F H. Research on hydraulic control system of hydraulic die forging hammer [J]. China Metalforming Equipment & Manufacturing Technology, 2010,45 (1): 68-71.

[10]姜雪婕. 75 kJ全液压对击锤机架及锤头锤杆的有限元分析[D]. 秦皇岛:燕山大学, 2015.

Jiang X J. Finite Element Analysis of the Frame and Hammer Rod of 75 kJ Fully Hydraulic Die Counter-blow Hammer[D]. Qinghuangdao:Yanshan University, 2015.

[11]刘雷,余心宏,文永洪. 630 kJ对击锤锤杆冲击应力有限元分析及结构改进[J]. 重型机械, 2013,(4): 67-70.

Liu L,Yu X H,Wen Y H. FEM analysis of 630 kJ counter-blow hammer′s rod impact stress and its structural improvement [J]. Heavy Machinery, 2013,(4): 67-70.

[12]李养娟,余意.模锻锤闭式锻造下镶块模模具设计改进[J].锻造与冲压,2019, 464(15):49-50. 

Li Y J, Yu Y. Improvement of the flashless hammer sectional forging die design [J]. Forging & Metalforming, 2019, 464 (15): 49-50.

[13]包弘贤. 液压流道液流特性分析[D]. 大连:大连理工大学, 2018.

Bao H X. Analysis on Fluid Flow Characteristics of Hydraulic Channel [D]. Dalian: Dalian University of Technology, 2018.

[14]张盟盟. 某大型曲轴对击锤模锻成形关键技术研究[D].重庆:重庆大学,2021. 

Zhang M M. Research on the Key Technology of the Forging of a Large Crankshaft with a Counter Hammer [D]. Chongqing: Chongqing University, 2021.

[15]Sadatdiynov K, Cui L Z, Zhang L, et al. An intelligent hybrid method: Multi-objective optimization for MEC-enabled devices of IoE[J]. Journal of Parallel and Distributed Computing,2023,171:1-13.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com