Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:TiC precipitation and analysis on mechanical properties of hot rolled deformation high titanium steel plate for support
Authors: Su Chaojie1  Luo Zhihua1  Liu Shengyong2  Zhang Liqiang3 
Unit: 1.School of Automotive Engineering  Henan Vocational College of Industry and Trade 2.College of Mechanical and Electrical Engineering  Henan Agricultural University 3.Zhengzhou Suda Industrial Machinery Service Co.  Ltd. 
KeyWords: high titanium steel  hot rolling deformation amount  TiC precipitated phase  mechanical properties  strengthening mechanism 
ClassificationCode:TG142
year,vol(issue):pagenumber:2023,48(8):118-124
Abstract:

The hot-rolled vacuum-smelted high titanium steel plate for support was selected as the test material, and the martensitic structure with a specific structure was obtained by controlling the degree of rolling deformation degree. Then, the microstructure and TiC precipitated phase changes of the steel under different rolling deformation degrees were compared, and the changes of mechanical properties of the steel were tested at the same time. The research results show that after gradually increasing the hot rolling deformation amount, the finer grains are obtained, and the martensite lath bundles with smaller width dimensions are formed; the sizes of TiC particles are more uniform and significantly reduced, and the TiC particles are fully fragmented and uniformly distributed; a larger proportion of TiC particles with a particle size of no more than Φ15 nm is formed, and the degree of austenite deformation also increases significantly, forming finer nano-TiC particles; the specimen reaches higher tensile strength and yield strength, forms a larger non-uniform elongation, while the uniform elongation remains constant, and the impact performance of specimen also shows an increasing trend.

Funds:
河南省高等学校重点科研项目(22A470005);河南省基础与前沿技术研究计划项目(162300410158)
AuthorIntro:
作者简介:苏超杰(1981-),男,硕士,副教授,E-mail:su321xing@126.com
Reference:

[1]管弦, 唐国华. 悬吊支架法施工钢混组合梁的力学行为研究[J]. 公路交通科技, 2022, 39(10): 84-90.


Guan X, Tang G H. Study on mechanical behavior of steel-concrete composite girders constructed by suspension bracing method [J]. Journal of Highway and Transportation Research and Development, 2022, 39(10): 84-90. 

[2]吴丽丽, 于雅倩, 胡存川. 圆形断面波形钢腹板支架结构稳定承载性能研究[J]. 采矿与安全工程学报, 2020, 37(3): 481-489.

Wu L L, Yu Y Q, Hu C C. Stability capacity of circular steel supporting structure with corrugated webs [J]. Journal of Mining & Safety Engineering, 2020, 37(3): 481-489.

[3]Zhang K, Yong Q L, Sun X J, et al. Effect of tempering temperature on microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel [J]. Acta Metall. Sin., 2014, 50(8): 913-920.

[4]周成, 叶其斌, 田勇, 等. 超高强度结构钢的研究及发展[J]. 材料热处理学报, 2021, 42(1): 14-23.

Zhou C, Ye Q B, Tian Y, et al. Research and application progress of ultra-high strength structural steel [J]. Journal of Materials and Heat Treatment, 2021, 42(1): 14-23.

[5]赵艳君, 孟庆雪, 马本莉, 等. 高强高韧低合金马氏体钢的静态软化行为[J]. 机械工程材料, 2017, 41(4): 24-28.

Zhao Y J, Meng Q X, Ma B L, et al. Static softening behavior of a high-strength and high-toughness low-alloy martensite steel [J]. Materials for Mechanical Engineering, 2017, 41(4): 24-28.

[6]陈小虎, 李守华, 曹晓恩, 等. 汽车用低合金高强钢HC500LA连续退火工艺[J]. 材料热处理学报, 2021, 42(4): 132-137.

Chen X H, Li S H, Cao X E, et al. Continuous annealing process of low alloy high strength steel HC500LA for automobile [J]. Transactions of Materials and Heat Treatment, 2021, 42(4): 132-137.

[7]Ni Z F, Sun Y S, Xue F, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Materials Science and Engineering: A, 2011, 528(18): 5664-5669.

[8]李媛媛, 甄维静, 李永亮, 等. 钙镁复合变质剂对冷轧高强钢组织遗传性及塑性影响[J]. 钢铁钒钛, 2021, 42(1): 119-125.

Li Y Y, Zhen W J, Li Y L, et al. Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel [J]. Iron Steel Vanadium Titanium, 2021, 42(1): 119-125.

[9]刘罗锦. 高钛高钢中TiC析出行为及对性能的影响 [D]. 北京: 钢铁研究总院, 2019.

Liu L J. TiC Precipitation Behavior and Its Effect on Properties in High Titanium and High Wear-resistant Steels [D]. Beijing: Central Iron & Steel Research Institute, 2019.

[10]孙新军,刘罗锦,梁小凯, 等. 高钛钢中 TiC析出行为及其对耐磨粒磨损性能的影响 [J]. 金属学报, 2020, 56 (4): 661-672.

Sun X J, Liu L J, Liang X K, et al. TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel [J]. Acta Metall. Sin., 2020, 56(4): 661-672.

[11]Liu L J, Liang X K, Liu J, et al. Precipitation process of TiC in low alloy martensitic steel and its effect on wear resistance [J]. ISIJ Int., 2020, 60(1): 168-174.

[12]杨跃标, 李宗强, 邓深, 等. 热轧钛微合金化高强钢低温冲击韧性的控制[J]. 钢铁, 2021, 56(3): 41-50.

Yang Y B, Li Z Q, Deng S, et al. Low temperature impact toughness controlling for Ti-microalloyed high strength steel [J]. Iron and Steel, 2021, 56(3): 41-50. 

[13]杭子迪, 冯运莉, 崔岩, 等. 高Ti微合金高强钢静态再结晶动力学模型[J]. 钢铁钒钛, 2020, 41(1): 141-146.

Hang Z D, Feng Y L, Cui Y, et al. Mathematical modeling of the recrystallization kinetics of high Ti microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2020, 41(1): 141-146. 

[14]梁文, 吴润, 胡俊, 等. 加热工艺对Nb-Ti微合金化高强钢的影响[J]. 中南大学学报:自然科学版, 2019, 50(9): 2063-2073.

Liang W, Wu R, Hu J, et al. Effect of heating process on Nb-Ti microalloyed high strength steel [J]. Journal of Central South University:Science and Technology, 2019, 50(9): 2063-2073. 

[15]杨庚蔚, 陆佳伟, 孙辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能[J]. 钢铁研究学报, 2019, 31(8): 726-732.

Yang G W, Lu J W, Sun H, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel [J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732. 

[16]李成刚, 周晓光, 蒋小冬, 等. 冷却工艺对Ti微合金化高强钢组织和硬度的影响[J]. 钢铁研究学报, 2021, 33(9): 987-993.

Li C G, Zhou X G, Jiang X D, et al. Influence of cooling processes on microstructure and hardness of Ti micro-alloyed high strength steel [J]. Journal of Iron and Steel Research, 2021, 33(9): 987-993.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com