Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on springback behavior for tube-fin radiator hydroforming
Authors: Chen Kai1 He Yulin1 Ma Jianping1 2 Han Haimei1 Yang Lianfa1 
Unit: 1.Faculty of Mechanical & Electrical Engineering  Guilin University of Electronic Technology  2.Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology Guilin University of Electronic  Technology 
KeyWords: tube-fin radiator hydroforming springback residual contact pressure hydroforming pressure 
ClassificationCode:TG394
year,vol(issue):pagenumber:2023,48(5):147-154
Abstract:

 The springback has an important influence on the forming quality of tube-fin radiator hydroforming. Therefore, the springback behavior of tube-fin radiator during the unloading stage of hydroforming when the radiator tube has plastic deformation and the fin has elastic deformation was analyzed by using the material power strengthening theory model, and the finite element model of the tube-fin radiator hydroforming was established by finite element software ABAQUS. Furthermore, the determination method of selecting the hydroforming pressure range and the method of obtaining the unconstrained springback difference between radiator tube and fin were proposed, and the influence laws of the hydroforming pressure on the overall springback amount and the springback difference of tube-fin radiator after unloading were analyzed. Finally, the influence law of the overall springback on the residual contact pressure was preliminarily explored. The results show that the springback model based on the material power strengthening constitutive relation can directly reflect the effect of springback on the residual contact pressure. The determination method for selecting the hydroforming pressure range is accurate and consistent with the theoretical results. Thus, during hydroforming, the hydroforming pressure should be increased within the hydroforming pressure range to increase the springback amount, and the residual contact pressure is increased to improve the forming quality.

Funds:
国家自然科学基金资助项目(52065014);广西自然科学基金资助项目(2017GXNSFAA198133);广西制造系统与先进制造技术重点实验室主任基金项目(22-35-4-S013);广西高校中青年教师科研基础能力提升项目(2023KY0220)
AuthorIntro:
作者简介:陈凯(1997-),男,硕士研究生,E-mail:chenkai1997430725@163.com;通信作者:何玉林(1980-),女,硕士,高级实验师,E-mail:hyl_2005@126.com
Reference:

[1]张枫,张丽娜,白俊文. 2021年我国制冷空调行业市场分析[J]. 制冷与空调,2022,22(8):1-6,12.


Zhang F, Zhang L N, Bai J W. 2021 market analysis of refrigeration and air-conditioning industry in China[J]. Refrigeration and Air-Conditioning, 2022, 22(8):1-6,12.

[2]晁利宁,鲜林云,余晗,等. 双金属复合管液压成型的有限元模拟及残余接触压力计算[J]. 焊管,2016,39(7):1-6,10.

Chao L N, Xian L Y, Yu H, et al. Finite element simulation and residual contact pressure calculation for bimetal composite pipe hydraulic forming[J]. Welded Pipe and Tube, 2016,39(7):1-6,10.

[3]Krips H, Podhorsky M. Hydraulic expansion-A new procedure for fastening tubes[J]. VGB Kraftswerkstech, 1976, 56(7): 456-464.

[4]陈刚,李伟,王秀丽. 用于管板连接的液压胀管的研究与应用[J]. 氯碱业,2001,(3):40-41,45.

Chen G, Li W, Wang X L. Study and application of hydraulic expansion tube for the joint of tubeplate[J]. Chlor-alkali Industry, 2001,(3):40-41,45.

[5]张阁. 双金属复合管液压成形弹塑性力学分析及有限元模拟研究[D]. 西安:西安石油大学,2019.

Zhang G. Mechanical Analysis and Finite Element Simulation Study on Hydro-bulging Process of Bimetallic Clad Pipe[D]. Xi′an: Xi′an Shiyou University, 2019.

[6]洪瑛,王学生,陈琴珠,等. 液压胀管理论计算中材料模型的双线性简化[J]. 机械设计与研究,2018,34(1):199-202.

Hong Y, Wang X S, Chen Q Z, et al. Bilinear simplification of material model in theoretical calculation of hydraulic expansion[J]. Machine Design & Research, 2018, 34(1):199-202.

[7]洪瑛,王学生. 基于材料双线性模型的液压胀管理论计算[J]. 化工设备与管道,2019,56(3):20-25.

Hong Y, Wang X S. Theoretical calculation for hydraulically expanded tube joint based on bilinear material model[J]. Process Equipment & Piping, 2019, 56(3):20-25.

[8]Huang X P, Xie T. Modeling hydraulically expanded tube-to-tubesheet joint based on general stress-strain curves of tube and tubesheet materials[J]. Journal of Pressure Vessel Technology, 2011, 133(3):031205.

[9]Huang X P. A general autofrettage model of a thick-walled cylinder based on tensile-compressive stress-strain curve of a material[J]. Journal of Strain Analysis for Engineering Design, 2005, 40(6):599-607.

[10]王海峰,桑芝富. 幂强化材料的液压胀管残余接触压力理论解[J]. 石油机械,2007,35(11):24-28.

Wang H F, Sang Z F. Theoretical solution of residual contact pressure of hydraulic expansion pipe with power strengthened material[J]. China Petroleum Machinery, 2007,35(11):24-28.

[11]Bouzid A H, Kazeminia M. Effect of reverse yielding on the residual contact stresses of tube-to-tubesheet joints subjected to hydraulic expansion[A]. Proceedings of ASME 2015 Pressure Vessels and Piping Conference[C]. Boston, 2015.

[12]Bouzid A H, Mourad A H I, El Domiaty A. Influence of Bauschinger effect on the residual contact pressure of hydraulically expanded tube-to-tubesheet joints[J]. International Journal of Pressure Vessels and Piping, 2016,(146):1-10.

[13]于强,杨连发,巢鹏飞,等. 薄壁管液压胀形过程的数值模拟[J]. 模具工业,2005,(11):3-6.

Yu Q, Yang L F, Chao P F, et al. Numerical simulation of hydraumatic bulging process of thin-walled tube[J]. Die & Mould Industry, 2005,(11):3-6.

[14]张闯闯,李航,初冠南. 组合式凸轮轴热胀锻成形工艺[J]. 锻压技术,2021,46(4):223-228.

Zhang C C, Li H, Chu G N. Hot gas hydro-forging process of combined camshaft[J]. Forging & Stamping Technology, 2021, 46(4):223-228.

[15]姚兴安,王海峰. 钛热交换器胀焊接头胀接残余接触压力模拟计算[J]. 石油化工设备,2017,46(1):12-19.

Yao X A, Wang H F. Study on residual contact stress for titanium-made heat-exchanger joint made by expansion and welding[J]. Petro-Chemical Equipment, 2017, 46 (1):12-19.

[16]谭丁森,张建勋,秦庆华. 带环形焊缝双金属复合管屈曲失效研究[J]. 塑性工程学报,2021,28(2):154-161.

Tan D S, Zhang J X, Qin Q H. Research on buckling failure of bi-material metal pipes with girth weld[J]. Journal of Plasticity Engineering, 2021, 28(2):154-161.

[17]Ma J P, Yang L F, Huang J J, et al. Residual contact pressure and elastic recovery of an assembled camshaft using tube hydroforming[J]. CIRP Journal of Manufacturing Science and Technology, 2021,(32):287-298.

[18]Ma J P, Yang L F, Liu J, et al. Evaluating the quality of assembled camshafts under pulsating hydroforming[J]. Journal of Manufacturing Processes, 2021,(61):69-82.

[19]袁林,刘浩伟,余志兵. 双金属复合管液压成形[J]. 塑性工程学报,2022,29(1):26-34.

Yuan L, Liu H W, Yu Z B. Hydroforming of bimetallic composite pipes[J]. Journal of Plasticity Engineering, 2022, 29(1):26-34.

[20]王珍珠. 双金属复合管界面结合与强化的数值模拟[D]. 南京:东南大学,2019.

Wang Z Z. Numerical Simuliation of Interfacial Bonding and Strengthening of Bimetal Clad Pipe[D]. Nanjing:Southeast University, 2019.

[21]李文成. 换热管胀接的理论分析及胀接力的合理选择[J]. 石油化工设备技术,1986,(2):10-17.

Li W C. Theoretical analysis of expansion joint of heat exchanger tubes and choice of expansion force[J]. Petrochemical Equipment Technology, 1986,(2):10-17.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com