Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation optimization on junction box based on response surface method and NSGA-Ⅱ
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG386.1
year,vol(issue):pagenumber:2023,48(4):72-76
Abstract:

 In the forming process of junction box, in order to understand the influences of different factors on the forming quality of junction box and obtain the optimal forming parameters, the finite element model was established by Dynaform, and combining with Design-Expert software to design the response surface test, and a polynomial regression response model for maximum thinning rate and maximum thickening rate was obtained by experiments. Then, the influence degrees of virtual blank holder force, die clearance and friction coefficient on the maximum thinning rate and the maximum thickening rate of workpiece were further determined, and the maximum thinning rate and the maximum thickening rate were optimized and solved by the non-dominated sorting genetic algorithm with elitist strategy (NSGA-II)to obtain the optimal process parameters as the blank holder force of 21400 N, the die clearance of 1.25 mm and the friction coefficient of 0.08. Simulation experiments were conducted by Dynaform, and the results were validated in the actual production. The study result provides a theoretical basis for the actual production of junction box.

Funds:
上海工程技术大学校企产学合作资助项目((19)CL-041);上海工程技术大学高水平高峰学科项目
AuthorIntro:
作者简介:叶恒昌(1998-),男,硕士研究生 E-mail:1692591090@qq.com 通信作者:龚红英(1974-),女,博士,教授 E-mail:ghyyw@163.com
Reference:

 
[1]周启航. 铝合金接线盒压铸工艺及模具数值模拟研究
[D].大连:大连交通大学,2020.


Zhou Q H. Research on Die-casting Process and Mold Numerical Simulation of Aluminum Alloy Junction Box
[D]. Dalian: Dalian Jiaotong University, 2020.


[2]施为钟, 龚红英,王斌,等.基于响应面法与NSGA-Ⅱ的汽车C柱零件成形质量多目标优化
[J].塑性工程学报,2021,28(8):30-37.

Shi W Z, Gong H Y, Wang B, et al. Multi-objective optimization of forming quality of automotive C-pillar parts based on response surface methodology and NSGA-Ⅱ
[J]. Journal of Plastic Engineering,2021, 28(8): 30-37.


[3]张忠芳, 刘棒棒,宗珂.某覆盖件冲压成形工艺分析及仿真模拟
[J].锻造与冲压,2021,(24):50-53.

Zhang Z F, Liu B B, Zong K. Analysis and simulation of stamping forming process for a cover part
[J]. Forging & Metalforming, 2021, (24): 50-53.


[4]于传浩, 张毅.基于Dynaform的凸缘圆筒件拉深工艺有限元分析
[J].锻压技术,2022,47(2):56-61.

Yu C H, Zhang Y. Finite element analysis of deep drawing process of flange and cylindrical parts based on Dynaform
[J].Forging & Stamping Technology,2022,47(2):56-61.


[5]邱超斌, 张猛,郎利辉,等.基于神经网络遗传算法的深腔型零件拉深工艺参数优化
[J].精密成形工程,2021,13(5):173-179.

Qiu C B, Zhang M, Lang L H, et al. Optimization of drawing process parameters for deep cavity parts based on neural network genetic algorithm
[J]. Precision Forming Engineering, 2021, 13(5):173-179.


[6]宋杰. 基于Dynaform的AZ91D镁合金盘体冲锻工艺优化
[J].热加工工艺,2021,50(7):89-91,96.

Song J. Optimization of punching and forging process for AZ91D magnesium alloy plate based on Dynaform
[J].Hot Working Technology,2021,50(7):89-91,96.


[7]梁发周, 钟圣滔.基于AutoForm模拟的汽车B柱加强板热冲压工艺分析与优化设计
[J].锻压技术,2022,47(12):75-80.

Liang F Z, Zhong S T. Analysis and optimized design of hot stamping process for automotive B-pillar reinforcement plate based on AutoForm simulation
[J]. Forging & Stamping Technology, 2022,47(12), 75-80.


[8]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].


[9]王孝培. 冲压手册
[M]. 第2版. 北京:机械工业出版社, 1990.

Wang X P. Stamping Manual
[M]. 2nd Edition. Beijing: China Machine Press, 1990.


[10]覃柏英, 秦文东,林贤坤,等.响应面法在发动机隔热罩冲压成形工艺参数优化中的应用
[J].锻压技术,2016,41(3):22-28.

Qin B Y, Qin W D, Lin X K, et al. Application of response surface methodology in optimization of process parameters for stamping and forming of engine heat shields
[J]. Forging & Stamping Technology, 2016, 41(3): 22-28.


[11]马永杰, 云文霞.遗传算法研究进展
[J].计算机应用研究, 2012,(4):1201-1206.

Ma Y J, Yun W X. Research progress of genetic algorithm
[J]. Research on Computer Application, 2012, (4):1201-1206.


[12]李宇, 赵博宁.基于遗传算法的冲压工艺参数优化研究
[J].今日制造与升级,2022,(4):109-112.

Li Y, Zhao B N. Research on stamping process parameter optimization based on genetic algorithm
[J]. Today′s Manufacturing and Upgrade, 2022, (4):109-112.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com