Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of differential cooling control on microalloy carbonitride precipitated phase for bulging fractured connecting rod of C70S6 steel
Authors: Wang Zhanhua1  Hui Weijun2  Zhao Xiuming3  Cheng Long4 
Unit: 1. School of Mechanical and Electronic Technology  Suzhou Institute of Trade & Commerce  2. School of Mechanical  Electronic and Control Engineering  Beijing Jiaotong University  3. School of Materials Science and Engineering  Nanjing Institute of Technology  4. Zhejiang Asia Pacific Mechanical and Electrical Co.  Ltd. 
KeyWords: C70S6 non-quenched and tempered steel  cooling speed  bulging fractured connecting rod  precipitated phase  precipitation strength 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2023,48(3):27-33
Abstract:

  In order to promote the localization process of non-quenched and tempered steel C70S6 and clarify the problem of cooling speed process control during the production of C70S6 steel bulging fractured connecting rod, the influence of cooling speed on the precipitation of microalloy carbonitride in C70S6 steel was analyzed and discussed. Then, through the use of metallographic microscope (OM), scanning electron microscope (SEM) and X-ray diffractometer (XRD) and other equipments, using physical-chemical phase analysis method, the microscopic characteristics such as composition and particle size distribution of the microalloy carbonitride precipitated phase in the I-beam position of domestic C70S6 non-quenched and tempered steel bulging fractured connecting rod by air cooling and wind cooling phase after hot forging were observed, and the precipitation strength behavior of microalloy carbonitride M(CN) precipitated phase was quantified. The results show that when the cooling speed is 3 and 4 ℃·s-1, the microalloy carbonitride precipitated phase are all face-centered cubic structures, and the nominal chemical formulas are (V0.896Cr0.070Mo0.034)(C0.259N0.741) and (V0.927Cr0.050Mo0.024)(C0.259N0.740). The size distribution of the precipitated phase is concentrated in 1-18 nm, and the contributions of precipitated phase to yield strength are about 122.0 and 127.6 MPa, respectively. When the cooling speed is accelerated, and the size of microalloy carbonitride precipitated phase is refined to a certain extent, but the effect is not obvious.

Funds:
国家重点研发计划项目(2016YFB0300100);苏州经贸职业技术学院2022年校级课题(YJ-ZX2208)
AuthorIntro:
作者简介:王占花(1989-),女,博士,讲师 E-mail:16116344@bjtu.edu.cn
Reference:

 [1]Dhole V J, Kharde R R, Gujar U. Fracture split connecting rod for automotive engines [J]. International Journal of Engineering Research and Development, 2012, 4(8): 37-41.


[2]张朝磊, 胡佳丽, 李戬, . 胀断连杆用非调质钢C70S6的材料特性及组织性能控制 [J]. 材料导报, 2020, 34(S1): 444-447.


Zhang C L, Hu J L, Li J, et al. Characteristic and properties control of air-cooled forging steel C70S6 for fracture splitting connecting rod [J]. Materials Reports, 2020, 34(S1): 444-447.


[3]韩常海, 王志利, 施进卿. 胀断连杆用非调质钢C70S6BY产品研发 [J]. 特殊钢, 2021, 42(6): 55-57.


Han C H, Wang Z L, Shi J Q . Research and development of non-quenched and tempered steel C70S6BY for expanding fracture connecting rod [J]. Special Steel, 2021, 42(6): 55-57.


[4]Gu Z, Yang S, Ku S, et al. Fracture splitting technology of automobile engine connecting rod[J]. International Journal Advanced Manufacturing Technology, 2005,25(9-10):883-887.


[5]刘攀, 魏元生, 李卫钊, . 非调质钢连杆材料国产化应用开发[J]. 热加工工艺, 2014,43(22):97-99.


Liu P, Wei Y S, Li W Z, et al. Development and application of localization of non-quenched and tempered connecting rod [J]. Hot Working Technology, 2014, 43(22): 97-99.


[6]陈思联, 惠卫军, 邵成伟, .控制冷却对中碳高钒非调质钢组织性能的影响[J].钢铁,2015,50(8):77-82.


Chen S L, Hui W J, Shao C W, et al. Effect of controlled cooling on microstructure and properties of medium-carbon high-vanadium microalloyed steel [J]. Iron & Steel, 2015, 50(8): 77-82.


[7]陈思联, 赵晓丽, 惠卫军, . 胀断连杆用中碳非调质钢的析出强化行为[J]. 钢铁,2015,50(7):77-83.


Chen S L, Zhao X L, Hui W J, et al. Precipitation behavior of medium-carbon steel for fracture splitting connecting rod [J]. Iron & Steel, 2015, 50(7): 77-83.


[8]巫宇峰, 惠卫军, 陈思联, . 钒对中碳非调质钢组织性能的影响 [J]. 钢铁研究学报, 2016, 28(11): 56-62,73.


Wu Y F, Hui W J, Chen S L, et al. Influence of vanadium on microstructure and properties of medium carbon forcing mechanical steel [J]. Journal of Iron and Steel Research, 2016, 28(11): 56-62, 73.


[9]Shanmugam S, Ramisetti K N, Misra R D K, et al. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels [J]. Material Science and Engineering A, 2007, 460(1): 335-343.


[10]王占花, 李慎, 葛宇, . C70S6非调质钢锻造连杆的组织力学性能和胀断性能研究 [J]. 热加工工艺, 2015, 44(19): 39-43.


Wang Z H, Li S, Ge Y, et al. Research on microstructure and mechanical properties and fracture splitting properties of forged connecting rod of C70S6 non-quenched and tempered steel [J]. Hot Working Technology, 2015, 44(19): 39-43.


[11]黄东, 吴明友, 文豪. 多向锻造机械轴承钢的组织与性能 [J]. 锻压技术, 2022, 47(4): 68-73.


Huang D, Wu M Y, Wen H. Microstructure and properties of mechanical bearing steel in multi-directional forging [J]. Forging & Stamping Technology, 2022, 47(4): 68-73.


[12]杨超飞, 吴庆辉, 陈颖, . 铌对高碳钢连续冷却过程中相变和珠光体片层间距的影响 [J]. 机械工程材料, 2013, 37(3): 16-20.


Yang C F, Wu Q H, Chen Y,  et al. Effects of niobium on phase transformation and lamellar spacing of pearlites of high carbon steel during continuous cooling [J]. Materials for Mechanical Engineering, 2013, 37(3): 16-20.


[13]雍歧龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006.


Yong Q L. Iron and Steel Materials in the Second Phase [M]. Beijing: Metallurgical Industry Press,2006.


[14]胡志力, 程彬洋, 魏鹏飞, . 7075铝合金热成形析出相演化规律和强度预测模型[J]. 锻压技术, 2021, 46(9): 105-111.


Hu Z LCheng B YWei P Fet al. Evolution laws of precipitated phases and strength prediction model for 7075 aluminum alloy during hot forming [J]. Forging & Stamping Technology, 2021, 46(9): 105-111.


 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com