Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on in-plane impact performance for negative Poisson′s ratio honeycomb structure with square function curved edge
Authors: Xu Fengxiang1 2  Guan Yijie1 2  Zou Zhen1 2  Liu Yanxiong1 2  Wu Lei3  Tu Fan3 
Unit: 1.Hubei Key Laboratory of Advanced Technology of Automotive Components  Wuhan University of Technology  2. Hubei Collaborative Innovation Center for Automotive Components Technology  Wuhan University of Technology 3. Wuhan Huaxia Fineblanking Technology Co. Ltd. 
KeyWords: square function curved edge  negative Poisson′s ratio  honeycomb structure  in-plane impact performance  dynamic response  energy absorption 
ClassificationCode:O347
year,vol(issue):pagenumber:2022,47(12):212-220
Abstract:

 Based on the traditional concave hexagonal honeycomb structure, a negative Poissons ratio honeycomb structure with square function curved edge was proposed. Then, the relationship between square function curved edge coefficient and its equivalent Poissons ratio was studied, and when the Poissons ratio was negative, the range of square function curved edge coefficient was determined. Furthermore, the influence laws of impact velocity on the deformation mode and the dynamic response of square function curved-edge honeycomb structure were revealed by using the finite element method, and the energy absorption of honeycomb structure was analyzed. The research results show that the configuration of introducing the square function curved edge has a relatively good negative Poissons ratio effect, and its equivalent Poissons ratio has a certain linear relationship with the coefficient of square function curved edge. The influence of impact velocity on the stress at the impact end of structure is greater than that at the fixed end. When the impact is at medium and high speeds, the vibration amplitude of platform area for the square function curved edge structure also increases significantly. At the same time, this configuration also has better energy absorption characteristics than the inner hexagon configuration. With the increasing of impact velocity, the energy absorption characteristics of the structure are also significantly enhanced.

Funds:
国家自然科学基金资助项目(51975438);高等学校学科创新引智计划(B17034)
AuthorIntro:
徐峰祥(1985-),男,博士,副教授 E-mail:xufx@whut.edu.cn 通信作者:刘艳雄(1985-),男,博士,副教授 E-mail: liuyx@whut.edu.cn
Reference:

 [1]于靖军, 谢岩,裴旭.负泊松比超材料研究进展[J].机械工程学报,2018,54(13):1-14.


 


Yu J J, Xie Y, Pei X. Research progress of negative Poissons ratio metamaterials[J]. Chinese Journal of Mechanical Engineering, 2018, 54(13):1-14.


 


[2]任鑫, 张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报,2019,51(3):656-687.


 


Ren X, Zhang X Y, Xie Y M. Research progress on materials and structures with negative Poissons ratio[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3):656-687.


 


[3]Johnson W, Reid S R. Metallic energy dissipating systems[J]. Applied Mechanics Reviews, 1978, 31(3):277-288.


 


[4]张新春, 刘颖,张建辉.金属蜂窝材料的面内冲击响应和能量吸收特性[J].功能材料,2013,44(15):2143-2147.


 


Zhang X C, Liu Y, Zhang J H. In-plane crushing response and energy absorption characteristics of metal honeycombs[J]. Journal of Functional Materials, 2013, 44(15):2143-2147.


 


[5]崔世堂, 王波,张科.负泊松比蜂窝面内动态压缩行为与吸能特性研究[J].应用力学学报,2017,34(5):919-924.


 


Cui S T, Wang B, Zhang K. Study on dynamic compression behavior and energy absorption characteristics of honeycomb with negative Poissons ratio[J]. Chinese Journal of Applied Mechanics, 2017, 34(5):919-924.


 


[6]卢子兴, 李康.负泊松比蜂窝动态压溃行为的有限元模拟[J].机械强度,2016,(6):1237-1242.


 


Lu Z X, Li K. Finite element simulation of dynamic collapse behavior of honeycomb with negative Poissons ratio[J]. Mechanical Strength, 2016, (6):1237-1242.


 


[7]侯秀慧, 尹冠生.负泊松比蜂窝抗冲击性能分析[J].机械强度,2016,(5):905-910.


 


Hou X H, Yin G S. Analysis of impact resistance of honeycomb with negative Poissons ratio[J]. Mechanical Strength, 2016, (5):905-910.


 


[8]Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poissons ratio[J]. Computational Materials Science, 2012, 58:140-153.


 


[9]Love A E H. A treatise on the mathematical theory of elasticity[J]. Bulletin of the American Mathematical Society, 1909, 34(2): 242-243.


 


[10]Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1982, 382(1782): 25-42.


 


[11]Lakes R. Advances in negative Poissons ratio materials[J]. Advanced Materials, 2010, 5(4):293-296.


 


[12]Wan H, Ohtaki H, Kotoska S, et al. A study of negative Poissons ratios in auxetic honeycombs based on a large deflection model[J]. European Journal of Mechanics/A Solids, 2003, 23(1):95-106.


 


[13]Choi J B, Lakes R S. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poissons ratio[J].International Journal of Mechanical Sciences, 1995, 37(1):51-59.


 


[14]韩会龙, 张新春.星形节点周期性蜂窝结构的面内动力学响应特性研究[J].振动与冲击,2017,(23):223-231.


 


Han H L, Zhang X C. Research on in-plane dynamic response characteristics of star-shaped node periodic honeycomb structure[J]. Vibration and Shock, 2017, (23):223-231.


 


[15]Li D, Ma J, Dong L, et al. Stiff square structure with a negative Poissons ratio[J]. Materials Letters, 2017, 188(1):149-151.


 


[16]Fu M H, Liu F M, Hu L L. A novel category of 3D chiral material with negative Poissons ratio[J]. Composites Science and Technology, 2018, 160(26):111-118.


 


[17]Liu Z F,Hao W Q, Qin Q H. Buckling and energy absorption of novel pre-folded tubes under axial impacts[J]. Applied Physics A Materials Science & Processing,2017,123(5).


 


[18]邓小林, 刘旺玉.一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J].振动与冲击,2017,36(13):103-109,154.


 


Deng X L, Liu W Y. A brief analysis of in-plane shock dynamics of a negative Poissons ratio sinusoidal honeycomb structure[J]. Journal of Vibration and Shock, 2017, 36(13):103-109154.


 


[19]马芳武, 梁鸿宇,赵颖,.内凹三角形负泊松比材料的面内冲击动力学性能[J].振动与冲击,2019,(17):81-87.


 


Ma F W, Liang H Y, Zhao Y, et al. In-plane shock dynamics performance of concave triangular negative Poissons ratio materials[J]. Journal of Vibration and Shock, 2019, (17):81-87.


 


[20]Carta G, Brun M, Baldi A. Design of a porous material with isotropic negative Poissons ratio[J]. Mechanics of Materials, 2016, 97:67-75.


 


[21]马芳武, 梁鸿宇,赵颖,.内凹三角形负泊松比结构耐撞性多目标优化设计[J].吉林大学学报,2020,50(1):29-35.


 


Ma F W, Liang H Y, Zhao Y, et al. Multi-objective optimization design for crashworthiness of concave triangular structures with negative Poissons ratio[J]. Journal of Jilin University, 2020, 50(1):29-35.


 


[22]吕亦乐. 负泊松比超材料的减振性能研究[D].成都:电子科技大学,2019.


 


Lyu Y L. Research on the Vibration Damping Performance of Negative Poissons Ratio Metamaterials[D]. Chengdu: University of Electronic Science and Technology of China, 2019.


 


[23]任晨辉, 杨德庆.二维负刚度负泊松比超材料及其力学性能[J].哈尔滨工程大学学报,2020,41(8):1129-1135.


 


Ren C H, Yang D Q. Two-dimensional negative stiffness and negative Poissons ratio metamaterial and its mechanical properties[J]. Journal of Harbin Engineering University, 2020, 41(8):1129-1135.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com