Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hydraulic deep drawing process with double-layer plate for 2024 aluminum alloy thin-walled saddle-shaped upper wall plate half-pipe part
Authors: Wei Lai Ma Jiangze Lang Lihui Zhang Sanmin Zhang Yanfeng 
Unit: Logistic Affairs Department Shenyang University of Technology Tianjin Tianduan Aviation Technology Co. Ltd.  Tianjin Tianduan Press Co. Ltd. School of Mechanical Engineering and Automation Beihang University 
KeyWords: 2024 aluminum alloy double-layer plate hydraulic deep drawing bending  liquid chamber pressure 
ClassificationCode:TG386; V261.2+8
year,vol(issue):pagenumber:2022,47(11):130-136
Abstract:

 In order to solve the problems of cracking, wrinkling and poor surface quality of an 2024 aluminum alloy  thin-walled saddle-shaped upper wall plate half-pipe part for tail vertebra on a Chinese aircraft in the traditional drop pressure and stretching, the hydraulic deep drawing process was adopted, and considering that the saddle-shaped ridge line of the upper wall plate half-pipe part for tail vertebra caused local instability during the forming process, the problem of material flow at the end of part was solved with the aid of the double-layer plate auxiliary forming idea. Then, the finite element model was established by finite element software, and the hydraulic deep drawing process with double-layer plate for 2024 aluminum alloy  thin-walled saddle-shaped upper wall plate half-pipe skin part for tail vertebra was simulated numerically. Furthermore, through the simulation analysis, combined with the requirements of auxiliary sheet in the process of double-layer plate hydraulic deep drawing, the yield strength range of auxiliary plate was determined, and according to the deformation ability of materials and the structural shape of part, the maximum liguid chamber pressure of liquid filling was optimized. The optimal simulation results show that the yield strength of the auxiliary plate should be above 174 MPa, and the maximum liquid chamber pressure is 15 MPa. Finally, the simulation results are verified by experiments, and the qualified saddle-shaped upper wall plate half-pipe parts for tail vertebra are produced, which provides a set of process methods in line with industrial production requirement and has great reference significance for the forming of such shaped parts.

Funds:
AuthorIntro:
作者简介:魏来(1980-),男,学士,工程师,E-mail:28775147@qq.com;通信作者:马江泽(1989-),男,硕士,工程师,E-mail:445791011@qq.com
Reference:

 [1]关军. 大曲面盒形零件充液成形工艺研究[J].机械设计,2018,35(S1):193-196.


Guan J. Study on filling forming technology of large curved box parts[J]. Journal of Machine Design, 2018, 35(S1):193-196.


[2]董浩. 5A06铝合金双层板充液拉深变形规律研究[D].哈尔滨:哈尔滨工业大学,2015.


Dong H. Investigation on Hydro-forming of 5A06 Aluminum Alloy Double-layer Sheets [D]. HarbinHarbin Institute of Technology, 2015.


[3]徐永超, 周斌军, 周久红. 不锈钢外板对2219铝合金拼焊板胀形性能的影响[J].精密成形工程, 2016, 85:65-70.


Xu Y C, Zhou B J, Zhou J H. Effects of outside sheet on the bulging properties of inside 2219 aluminum FSW sheet[J]. Journal of Netshape Forming Engineering, 2016, 85:65-70.


[4]孙志莹,郎利辉,孔德帅.铝合金马鞍形件充液成形工艺模拟分析[J].精密成形工程, 2015, 71:46-5065.


Sun Z Y, Lang L H, Kong D S. Simulation analysis of hydroforming process for alumium alloy saddle parts[J]. Journal of Netshape Forming Engineering, 2015, 71:46-5065.


[5]胡成武,李光,毛远征,等.圆筒形件的拉深变形与应力分析[J].塑性工程学报,2020273):130-136.


Hu C WLi GMao Y Zet al. Stress analysis and deformation of deep drawing for cylindrical part [J].Journal of Plasticity Engineering2020273):130-136.


[6]周久红.2219铝合金拼焊内层板的双板液压成形工艺研究[D].哈尔滨:哈尔滨工业大学,2016.


Zhou J H. Research on Hydroforming of Double Layered Sheet of Inner Tallor-welded Blank of 2219 Aluminum Alloy[D]. HarbinHarbin Institute of Technology, 2016.


[7]王朝鸣,马江泽, 张建民, .2024铝合金长半管类零件充液成形技术研究[J].机械设计, 2020, 376:82-86.


Wang C M, Ma J Z, Zhang J M, et al. Research on hydro-forming technology for long semi-pipe parts of 2024 aluminum alloy[J]. Journal of Machine Design, 2020, 376:82-86.


[8]吴娜,刘超,王晓迪.小型汽车桥壳液压胀形加工方法的研究现状[J].塑性工程学报,2020,279):12-19.


Wu NLiu CWang X D.Research status on hydro-bulging processing method of small automobile axle-housing [J].Journal of Plasticity Engineering2020,279):12-19.


[9]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].


[10]杨莎. 管材充液成形自动化生产线控制技术[J]. 机械设计, 2018, 35(S1):362-365.


Yang S. Tubular hydroforming automatic production line control technology[J]. Journal of Machine Design, 2018, 35(S1):362-365.


[11]陈超,秦登林,赵升吨,等.1600 kN精压机工作机构的力学分析[J].塑性工程学报,2021,285):53-61.


Chen C, Qin D L, Zhao S Det al. Mechanical analysis of working mechanisms of 1600 kN precision press[J].Journal of Plasticity Engineering2021,285):53-61.


[12]刘佳琪,陈学文,皇涛,等.2A12铝合金临界损伤值测定及试验验证[J].塑性工程学报,2020,271):131-137.


Liu J QChen X WHuang Tet al. Measurement and experimental validation of critical damage value for 2A12 aluminum alloy[J].Journal of Plasticity Engineering2020,271):131-137.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com