Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Precision forming and parameter optimization for aircraft inner skin part with variable curvature
Authors: Li Xiaojun Men Xiangnan Bi Silong Xie Yanmin Du Lingfeng Deng Tao Zhou Xiong 
Unit: Chengdu Aircraft Industrial (Group) Co.  Ltd. Sichuan Chengfei Integration Technology Co.  Ltd. School of Mechanical Engineering Southwest Jiaotong University 
KeyWords: inner skin part with variable curvature  blank holder force  friction coefficient  BP neural network  particle swarm optimization thinning rate 
ClassificationCode:TG386.3
year,vol(issue):pagenumber:2022,47(11):116-122
Abstract:

 In order to promote the rapid manufacturing of aircraft sheet metal components with complex curved surfaces,for the aircraft inner skin part with variable curvature, based on the stamping and deep drawing technology, the precise forming of part was realized by designing reasonable process model and combining with the finite element analysis method. Then, taking the thinning rate of part as the target response value and the blank holder force, friction coefficient between die and sheet and friction coefficient between blank holder ring and sheet as the optimization variables, an orthogonal test with three factors and five levels was designed, a BP neural network surrogate model was established. Furthermore, the best process parameters combination were solved by the particle swarm optimization (PSO) as the blank holder force of 607 kN, the friction coefficient between die and sheet of 0.20 and the friction coefficient between blank holder ring and sheet of 0.13. The results show that the thinning rate and forming quality of part are improved by using the optimized process parameters to conduct the forming simulation. The average absolute percentage error MAPE between the predicted value of the simulation model and the actual value is 2.49%, which meets the requirements of optimization accuracy. At the same time, the optimized parameters were used to carry out the process test, and the qualified parts were formed in one time, and the relative error between the actual thinning rate and the predicted value of the simulation model is less than 4.8%, which verifies the accuracy of the simulation model and proves the effectiveness of the optimization method.

Funds:
四川省省院省校合作项目(2019YFSY0050)
AuthorIntro:
作者简介:李晓军(1989-),男,学士,高级工程师,E-mail:lxjupup@163.com;通信作者:谢延敏(1975-),男,博士,副教授,E-mail:xie_yanmin@swjtu.edu.cn
Reference:

 [1]曾元松.航空钣金成形技术[M].北京: 航空工业出版社,2014.


Zeng Y S.Aeronautical Sheet Metal Forming Technology[M]. Beijing: AviationIndustry Press, 2014.


[2]职业技能培训MES 系列教材编委会. 冷作钣金工技能[M]. 北京: 航空工业出版社,2008.


Editorial Board of MES Series Textbooks for Vocational SkillsTraining. Cold Working Sheet Metal Skills[M]. Beijing: AviationIndustry Press, 2008.


[3]邱超斌, 郭庆磊, 郎利辉,. 铝合金船形深腔薄壁构件充液成形变形规律研究[J]. 精密成形工程, 2021,13(1):133-138.


Qiu C B, Guo Q L, Lang L H, et al. Deformation regularity of aluminum alloy boat shaped deep-cavity and thin-walled part in hydroforming [J]. Journal of Netshape Forming Engineering, 2021,13 (1): 133-138.


[4]曾一畔, 董锦亮, 宋炳毅,. 飞机复杂曲面蒙皮零件充液拉深技术研究[J]. 精密成形工程, 2019, 60(3):65-71.


Zeng Y P, Dong J L, Song B Y, et al. Hydrodynamic deep drawing for complex curved skin part of aircraft[J].Journal of Netshape Forming Engineering, 2019, 60(3):65-71.


[5]束飞, 拓建峰, 张宇岑,. 飞机铝合金深锥型面零件多道次充液拉深技术[J]. 精密成形工程, 2016, 8(5):98-104.


Shu F, Tuo J F, Zhang Y C, et al. Multi-step hydrodynamic deep drawing of aluminium alloy conical part with deep cavity [J]. Journal of Netshape Forming Engineering, 2016, 8 (5): 98-104.


[6]曾一畔, 董锦亮, 何腾达,. 变曲率抛物线型零件充液拉深工艺优化[J]. 机械科学与技术, 2017, 36(S1):70-74.


Zeng Y P, Dong J L, He T D, et al. Process optimization of hydrodynamic deep drawing of variablecurvature parabolic part [J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36 (S1): 70-74.


[7]孟宝, 万敏, 吴向东,. 板材充液拉深动态加载系统开发与应用[J]. 机械工程学报, 2013, 49(24):60-66.


Meng B, Wan M, Wu X D, et al. Development of dynamic loading system for sheet metal hydrodynamic deep drawing and its application [J]. Journal of Mechanical Engineering, 2013, 49 (24): 60-66.


[8]孙志莹, 郎利辉, 孔德帅. 铝合金马鞍形件充液成形工艺模拟分析[J]. 精密成形工程, 2015, 7(1):46-50,65.


Sun Z Y, Lang L H, Kong D S. Simulation analysis of hydroformingprocess of aluminum alloy saddle parts [J]. Journal of Netshape Forming Engineering, 2015, 7(1): 46-50,65.


[9]徐龙, 束飞, 龚甘霖,. 复杂钣金零件充液拉深工艺分析与试验研究[J]. 精密成形工程, 2016, 8(6):49-53.


Xu L, Shu F, Gong G L, et al. Process analysis and experimental investigation on hydroforming of complex sheet metal parts [J]. Journal of Netshape Forming Engineering, 2016, 8 (6): 49-53.


[10]王媛,李志强,姚吉威.深腔类航空钣金件成形工艺研究及应用[J].制造技术与机床,2021,(12):81-84.


Wang Y, Li Z Q, Yao J W. Research and application of the forming process of deep cavity aviation sheet metal [J]. Manufacturing Technology & Machine Tool, 2021, (12): 81-84.


[11]韩龙帅,王刚,郑学斌,等.基于Autoform的门内板冲压仿真分析[J].塑性工程学报,2021284):82-88.


Han L SWang GZheng X Bet al. Simulation analysis of door inner panel stamping based on Autoform[J].Journal of Plasticity Engineering2021284):82-88.


[12]于宏辉. 钣金凸包冲压成形的仿真研究[J]. 机械制造, 2019, 57(7):58-61,75.


Yu H H. Simulation study on stamping & forming of sheet metal convex closure [J]. Machinery, 2019, 57 (7): 58-61, 75.


[13]王玲,张晓嵩,赵天章,等.局部激光热处理辅助充液成形航空口框类零件的研究[J].塑性工程学报,2020,276):93-97.


Wang LZhang X SZhao T Zet al. Research on local laser heat treatment-assisted hydroforming for aeronautical buccal frame parts[J].Journal of Plasticity Engineering2020,276):93-97.


[14]Guo Y H, Xie Y M, Wang D T, et al. An improved damage-coupled viscoplastic model for predicting ductile fracture in aluminum alloy at high temperatures[J]. Journal of Materials Processing Technology, 2021, 296:117229.


[15]Naceur H, Guo Y Q, Batoz J L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process[J]. International Journal of Mechanical Sciences, 2001, 43(10): 2407-2434.


[16]张华伟, 郑晓涛. 基于遗传算法优化神经网络的拼焊板压边力预测[J]. 东北大学学报:自然科学版, 2020, 41(2):241-245.


Zhang H W, Zheng X T. Blank holder force prediction of tailor welded blank based on neural network optimized by genetic algorithm [J]. Journal of Northeastern University:Natural Science, 2020, 41 (2): 241-245.


[17]Xie Y M, Du L F, Zhao J B, et al. Multi-objective optimization of process parameters in stamping based on an improved RBM-BPNN network and MOPSO algorithm[J]. Structural and Multidisciplinary Optimization,2021, 64 (6): 4209-4235.


[18]李泷杲. 金属板料成形有限元模拟基础[M]. 北京: 北京航空航天大学出版社,2008.


Li L G.Finite Element Simulation Basis of Sheet Metalforming[M]. Beijing: Beihang University Press, 2008.


[19]焦欣,吴越武.基于正交试验工艺参数对门内板成形性的影响[J].塑性工程学报,2020,2712):73-81.


Jiao X, Wu Y W. Influence of process parameters on formability of door inner panel based on orthogonal test[J]. Journal of Plasticity Engineering2020,2712):73-81.


[20]蒋磊,王龙,李十全,.基于正交试验的侧围外板拉延成形工艺参数优化研究[J].汽车工艺与材料,2021,(9):42-50.


Jiang L, Wang L, Li S Q, et al. Research on optimization of drawing process parameters for side outer panel based on orthogonal test [J]. Automobile Technology & Material, 2021, (9): 42-50.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com