Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Fracture characteristics and mechanism on DP780 dual-phase steel under different strain states
Authors: Yu Li Liu Jing Ge Rui Wei Xing Peng Zhou Chen Ming Liu Dong 
Unit: Wuhan University of Science and Technology  Research Institute of Baoshan Iron & Steel Co.  Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel) 
KeyWords: DP780 dual-phase steel strain state fracture failure equivalent plastic fracture strain limited thinning rate phase interface stress concentration 
ClassificationCode:TG386
year,vol(issue):pagenumber:2022,47(10):48-55
Abstract:

Advanced high strength steel (AHSS) is an important material for lightweight in automobile, which performs different fracture characteristics under different strain states. Therefore, for DP780 dual-phase steel, the fracture failure behavior under typical strain state was studied. Then, the microstructure and fracture morphology of samples were observed and characterized, and the fracture micro-mechanism of DP780 dual-phase steel under different strain states was analyzed. The results show that with the increasing of strain ratio, the equivalent plastic fracture strain εf decreases first and then increases, εf is the smallest under plane strain state. And the largest under equiaxial tension strain state. And the strain state has a significant effect on the fracture characteristics and failure of DP780 dual-phase steel. Under the plane strain state, the strain gradient along the thickness direction and the triaxial tensile stress state in the material core increase the inconsistency degree of deformation, accelerate the initiation and growth of micro-voids, and are more likely to produce cracks along the thickness direction and tear compared with the uniaxial tensile state. Under the equiaxial tension strain state, the material deforms uniformly, the stain gradient along the thickness direction is small, and the initiation and growth of pores are inhibited so that the equivalent plastic fracture strain of DP780 dual-phase steel under the equiaxial tensile strain state is the largest.

 
Funds:
国家自然科学基金资助项目(U20A20270)
AuthorIntro:
余立(1984-),男,博士研究生,高级工程师,E-mail:yu.li@baosteel.com;通信作者:刘静(1964-),女,博士,教授,E-mail:liujing@wust.edu.cn
Reference:

 [1]马鸣图. 先进汽车用钢[M]. 北京: 化学工业出版社, 2008.

Ma M T. Advanced Automotive Steel [M]. Beijing: Chemical Industry Press, 2008.

[2]李光瀛, 王利, 马鸣图,. 3代先进高强度钢AHSS汽车板的开发[J]. 轧钢, 2019, 36(5): 1-13.

Li G Y, Wang L, Ma M T, et al. Development of 3rd generation advanced high strength steel for automobile[J]. Steel Rolling, 2019, 36(5): 1-13.

[3]刘清梅,封娇洁. 汽车轻量化条件下先进高强钢的发展及现状[J]. 轧钢, 2020, 37(4): 65-70,90.

Liu Q M, Feng J J. Development and current situation of advanced highstrength steel under the condition of automotive light weight[J]. Steel Rolling, 2020, 37(4): 65-70,90.

[4]金学军, 龚煜, 韩先洪,. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428.

Jing X J, Gong Y, Han X H, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 411-428.

[5]路洪洲, 王智文, 陈一龙. 汽车轻量化评价[J]. 汽车工程学报, 2015, 5(1): 1-8.

Lu H Z, Wang Z W, Chen Y L. Evaluation methodology for automotive lightweight design[J]. Chinese Journal of Automotive Engineering, 2015, 5(1): 1-8.

[6]Keeler S, Kimchi M. Advanced Highstrength Steels Application Guidelines V6[M]. Brussels: World Auto Steel, 2018.

[7]Hu Q, Zhang F, Li X, et al. Overview on the prediction models for sheet metal forming failure: Necking and ductile fracture[J]. Acta Mechanica Solida Sinica, 2018, 31(3): 259-289.

[8]Park N, Huh H, Lim S J, et al. Fracturebased forming limit criteria for anisotropic materials in sheet metal forming[J]. International Journal of Plasticity, 2017, 96: 1-35.

[9]Barnwal V K, Lee S Y, Choi J, et al. Fracture assessment in dual phase and transformationinduced plasticity steels during 3-point bending[J]. Theoretical and Applied Fracture Mechanics, 2020, 110: 1-16.

[10]Barrett T J, Knezevic M. Modeling material behavior during continuous bending under tension for inferring the postnecking strain hardening response of ductile sheet metals: Application to DP780 steel[J]. International Journal of Mechanical Sciences, 2020, 174105508.

[11]潘利波, 左治江, 周文强,. 双相钢的成形与断裂极限性能分析[J]. 锻压技术, 2021, 46(7): 185-189.

Pan L B, Zuo Z J, Zhou W Q, et at. Analysis on forming and fracture limit properties for dual phase steel[J]. Forging & Stamping Technology, 2021, 46(7): 185-189.

[12]Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.

[13]Bao Y, Wierzbicki T. On the cutoff value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7): 1049-1069.

[14]Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096.

[15]Bai Y, Wierzbicki T. Application of extended mohr-coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-10.

[16]Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals[J]. International Journal of Solids and Structures, 2012, 49(25): 3605-3615.

[17]Lou Y S, Lim S J, Huh H. Prediction of fracture forming limit for DP780 steel sheet[J]. Metals and Materials International, 2013, 19(4): 697-705.

[18]Cheng C, Meng B, Han J Q, et al. A modified LouHuh model for characterization of ductile fracture of DP590 sheet[J]. Materials & Design, 2017, 118: 89-98.

[19]Samei J, Green D E, Cheng J, et al. Influence of strain path on nucleation and growth of voids in dual phase steel sheets[J]. Materials & Design, 2016, 92: 1028-1037.

[20]ISO 12004—2:2021,Metallic materials—Determination of forminglimit curves for sheet and strip—Part 2: Determination of forming-limit curves in the laboratory[S].

[21]Nikhare C, Hodgson P D, Weiss M. Necking and fracture of advanced high strength steels[J]. Materials Science and Engineering: A, 2011, 528(6): 3010-3013.

[22]王平, 崔建忠. 金属塑性成形力学[M]. 北京: 冶金工业出版社, 2018.

Wang P, Cui J Z. Mechanics of Metal Plastic Forming [M]. Beijing: Metallurgical Industry Press, 2018.

[23]王自强, 段祝平. 塑性细观力学[M]. 北京: 科学出版社, 1995.

Wang Z Q, Duan Z P. Micromechanics of Plasticity [M]. Beijing: Science Press, 1995.

[24]Ashrafi H, Shamanian M, Emadi R, et al. Void formation and plastic deformation mechanism of a coldrolled dualphase steel during tension[J]. Acta Metallurgica Sinica (English Letters), 2020, 33: 299-36.

[25]夏志皋. 塑性力学[M]. 上海: 同济大学出版社, 1991.

Xia Z G. Plastic Mechanics [M]. Shanghai: Tongji University Press, 1991.

[26]Frómeta D, Lara A, Grifé L, et al. Fracture resistance of advanced highstrength steel sheets for automotive applications[J]. Metallurgical and Materials Transactions A, 2021, 52(2): 840-856.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com