Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Analysis and optimization on wrinkling defect in bending process for a car chassis frame bending pipe
Authors: Hu Xiao Yin Jingjing Wang Chuangwei Wang Feilong 
Unit: State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization  PanGang Group Research Institute Co.  Ltd. 
KeyWords: chassis frame  pickling sheet  bending pipe  wrinkling  SIGMA analysis 
ClassificationCode:TG386.43
year,vol(issue):pagenumber:2022,47(9):112-117
Abstract:

 Aiming at the wrinkling problem in the bending process of a car chassis frame bending pipebased on SIGMA module of Autoform software, the influence of material parameters on wrinkling defect was analyzed, and the parameters of material which were sensitive to wrinkling defect were determined, so as to guide the material improvement. The influence of yield strength, tensile strength, r90  and friction factor on the wrinkling defect for S355MC steel pickling sheet material was analyzed. The simulation results show that the yield strength and tensile strength have a great influence on the wrinkling defect of bending pipe, while the friction factor and r90  have almost no influence on the wrinkling defect. It is beneficial to reduce the yield strength and the yield strength ratio to control the wrinkling defect. By adding an appropriate amount of Cr and adjusting the coiling temperature, the yield strength and the yield strength ratio of S355MC steel pickling sheet material are effectively reduced. The average yield strength is 374.1 MPa, and the average yield strength ratio is below 0.73. By reducing the yield strength and the yield strength ratio of the material, the wrinkling problem of bending pipe is successfully solved.

Funds:
AuthorIntro:
胡晓(1990-),男,硕士,工程师 E-mail:hgdxiaohu@163.com
Reference:

 [1]Hartl C. Research and advances in fundamentals and industrial applications of hydroforming[J]. Journal of Materials Processing Technology, 2005, 167(2/3): 383-392.


 


[2]Manabe K I, Amino M. Effects of process parameters and material properties on deformation process in tube hydro-forming[J]. Journal of Materials Processing Technology, 2002, 123: 285-291.


 


[3]韩兆建. 金属薄壁管材充液弯曲工艺研究[D]. 秦皇岛:燕山大学, 2021.


 


Han Z J. Research on Liquid-filled Bending Process of Metal Thin-walled Pipes [D]. Qinhuangdao: Yanshan University, 2021.


 


[4]车移, 詹红, 屈俊岑, . 基于全量流动理论的管材弯曲过程失稳分析研究[J]. 精密成形工程, 2021, 13(3): 112-117.


 


Che Y, Zhan H, Qu J C, et al. Analysis on instability in tube bending process based on total theory of plasticity[J]. Journal of Netshape Forming Engineering, 2021, 13(3): 112-117.


 


[5]曹国富. 弯管异常起皱的成因分析[J]. 焊管, 2012, 35(11): 40-44.


 


Cao G F. Analysis on reasons caused by bend abnormal wrinkle[J]. Welded Pipe and Tube, 2012, 35(11): 40-44.


 


 


[6]戴莉, 方军, 程璐, . 材料参数对高强不锈钢管数控绕弯成形失稳起皱的影响[J]. 精密成形工程, 2017, 9(1): 91-95.


 


Dai L, Fang J, Cheng L, et al. Effects of material parameters on wrinkling of high-strength stainless steel tube in numerical control rotary draw bending[J]. Journal of Netshape Forming Engineering, 2017, 9(1): 91-95.


 


[7]林艳, 杨合, 李恒, . 薄壁管数控弯曲过程中失稳起皱的主要影响因素[J]. 航空学报, 2003, (5): 456-461.


 


Lin Y, Yang H, Li H, et al. Influences of forming parameters on wrinkling in NC thin-walled tube bending[J]. Acta Aeronautica et Astronautica Sinica, 2003, (5): 456-461.


 


[8]方军. 21-6-9高强不锈钢管数控绕弯成形规律研究[D]. 南京:南京航空航天大学, 2015.


 


Fang J. Study on Forming Rules of 21-6-9 High-strength Stainless Steel Tubes in NC Rotary Draw Bending Process[D]. NanjingNanjing University of Aeronautics and Astronautics, 2015.


 


[9]李恒. 薄壁管数控弯曲成形过程失稳起皱及成形极限的研究[D].西安:西北工业大学, 2004.


 


Li H. Research on Wrinkling and Forming Limit of NC Bending Process of Thin-walled Tube[D]. Xian: Northwestern Polytechnical University, 2004.


 


[10]张博凡, 王增强. Autoform Sigma模块在汽车后盖内板模具调试中的应用[J]. 模具工业, 2014, 40(7): 40-42.


 


Zhang B F, Wang Z Q. Application of Autoform Sigma in the tryout of die for automotive decklid inner plate[J]. Die & Mould Industry, 2014, 40(7): 40-42.


 


[11]Fang J, Lu S Q, Wang K L, et al. Three-dimensional finite element model of high strength 21-6-9 stainless steel tube in rotary draw bending and its application[J]. Indian Journal of Engineering and Materials Sciences, 2015, 22(2): 142-151.


 


[12]涂小文. AutoForm原理技巧与战例实用手册[M]. 武汉: 湖北科学技术出版社, 2013.


 


Tu X W. Practical Manual of AutoForm Principles, Skills and Examples[M]. Wuhan: Hubei Science & Technology Press, 2013.


 


[13]雍岐龙, 马鸣图, 吴宝镕. 微合金钢——物理和力学冶金[M]. 北京: 机械工业出版社, 1989.


 


Yong Q L, Ma M T, Wu B R. Microalloyed SteelPhysical and Mechanical Metallurgy[M]. Beijing: China Machine Press, 1989.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com