Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Grain size control for large austenitic stainless steel forgings
Authors: Li Changyi  Wang Hang  Wang Aiqin  Xie Jingpei  Yu Xingsheng  Shi Ruxing  Wang Wenyan 
Unit: Luoyang CITIC HIC Casting  Forging Co. Ltd.  CITIC Heavy Industries Co. Ltd.  Henan University of Science and Technology 
KeyWords: F316H austenitic stainless steel  grain size  dynamic recrystallization  tube sheet microstructure evaluation 
ClassificationCode:TG316
year,vol(issue):pagenumber:2022,47(8):22-28
Abstract:

 For the problems of large plastic deformation resistance and cracking, coarse grains and mixed grains easily caused by improper forging process for large forgings of F316H austenitic stainless steel, the grain coarsening test, high temperature tensile and high temperature compression tests were carried out, and the influences of material grain growth law, thermoplasticity and critical deformation amount on the dynamic recrystallization were studied. The test results show that when the deformation temperature is higher than 1050 ℃, the grain size increases with the extending of holding time, and the higher the deformation temperature is, the more obvious the trend of grain size growth is. With the increasing of deformation temperature, the tensile strength of material gradually decreases, and the plastic resistance gradually decreases. At the same deformation temperature, the degree of dynamic recrystallization increases with the increasing of deformation degree. Under the same deformation amount, with the increasing of deformation temperature, the dynamic recrystallization is more sufficient, the grain size is smaller, and the number of grains increases significantly. According to the test results, the forging process of tube sheet forgings with a diameter of Φ5800 mm was formulated, and a good effect was obtained by practical production verification. 

Funds:
洛阳市重大科技专项(2101005A)
AuthorIntro:
作者简介:李昌义(1981-),男,博士,正高级工程师,E-mail:18638369057@163.com;通信作者:王行(1989-),男,博士研究生,E-mail:wanghangred@163.com
Reference:

 [1]赵宇辉, 王志国, 赵吉宾, . 冷却条件对等离子弧送粉增材316L不锈钢组织性能影响研究[J]. 稀有金属, 2021, 45(9): 1062-1069.


Zhao Y H, Wang Z G, Zhao J B, et al. Microstructure and properties of plasma arc powder additive manufactured 316L stainless steel with different cooling conditions[J]. Chinese Journal of Rare Metals, 2021, 45(9): 1062-1069.


[2]田继红, 张学瑞, 秦凤明, . Mn18Cr18N电渣重熔钢的热压缩工艺模拟与实验研究[J]. 锻压技术, 2020, 45(5): 185-191.


Tian J H, Zhang X R, Qin F M, et al. Simulation and experimental research on hot compression process for Mn18Cr18N ESR steel[J]. Forging & Stamping Technology, 2020, 45(5): 185-191.


[3]王艺南, 兰亮云, 张一婷, . 轧态904L超级奥氏体不锈钢动态再结晶行为[J]. 塑性工程学报, 2021, 28(7): 138-144.


Wang Y N, Lan L Y, Zhang Y T, et al. Dynamic recrystallization behavior of as-rolled 904L super austenitic stainless steel[J]. Journal of Plasticity Engineering, 2021, 28(7): 138-144.


[4]齐珂, 隋大山, 陈飞, . 316LN钢奥氏体晶粒长大模型[J]. 塑性工程学报, 2014, 21(3): 98-103.


Qi K, Sui D S, Chen F, et al. Study on austenite grain growth behavior of 316LN steel[J]. Journal of Plasticity Engineering, 2014, 21(3): 98-103.


[5]吴从风, 李时磊, 张海龙, . 316LN奥氏体不锈钢的高温拉伸断裂行为[J]. 材料研究学报, 2014, 28(7): 481-489.


Wu C F, Li S L, Zhang H L, et al. On high temperature tensile fracture behavior of 316LN austenitic stainless steel[J]. Chinese Journal of Materials Research, 2014, 28(7): 481-489.


[6]赵晓东. 304不锈钢热变形条件下动态再结晶行为研究[D]. 太原: 太原科技大学, 2009.


Zhao X D. Study on Dynamic Recrystallization Behavior of 304 Stainless Steel under Hot Deformation[D]. Taiyuan: Taiyuan University of Science & Technology, 2009.


[7]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10): 107-112.


[8]裴文娇, 郭训忠, 王文涛, . 316L 奥氏体不锈钢的高温流变行为[J]. 塑性工程学报, 2014, 21 (3): 104-110.


Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature[J]. Journal of Plasticity Engineering, 2014, 21 (3): 104-110.


[9]胡峰. 含铌奥氏体不锈钢热变形行为及热加工图[D]. 镇江: 江苏大学, 2018.


Hu F. Hot Deformation Behavior and Processing Map of Austenitic Stainless Steel Containing Niobium[D]. Zhenjiang: Jiangsu University, 2018.


[10]齐珂. 核电用钢316LN动态再结晶行为实验研究与数值模拟[D]. 上海: 上海交通大学, 2014.


Qi K. Experimental and Numerical Study on Dynamic Recrystallization of 316LN Nuclear Power Steel[D]. Shanghai: Shanghai Jiao Tong University, 2014.


[11]许树森, 史宇麟, 黄国军, . 大型管板锻造工艺研究[J]. 矿山机械, 2002(4): 64-66.


Xu S S, Shi Y L, Huang G J, et al. Study on forging process of large tube sheet[J]. Mining & Processing Equipment, 2002(4): 64-66.


[12]薛永栋, 胡振志, 陈明, . 特大型管板锻造工艺技术研究[J]. 热加工工艺, 2018, 47(15): 153-156.


Xue Y D, Hu Z Z, Chen M, et al. Research on forging technology of ultra-large tube plate[J]. Hot Working Technology, 2018, 47 (15): 153-156.


[13]许树森, 史宇麟, 陈钢, . 锻造特大型管板的工艺方法[P]. 中国:  200510018071.52008-08-06.


Xu S SShi Y LChen Get al. Forging process method of ultra-large tube plate[P].China: 200510018071.52008-08-06.


[14]GB/T 6394—2017, 金属平均晶粒度测定方法[S].


GB/T 6394—2017, Deter mination of estimating the average grain size of metal[S].


[15]GB/T 10561—2005, 钢中非金属夹杂物含量的测定标准评级图显微检验法[S].


GB/T 10561—2005, Steel—Determination of content of nonmetallic inclusions—Micrographic method using standards diagrams[S].


[16]NB/T 20003.2—2010, 核电厂核岛机械设备无损检测第2部分:超声检测[S].


NB/T 20003.2—2010, Non-destructive testing for mechanical components in nuclear island of nuclear power plants—Part 2: Ultrasonic testing[S].

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com