Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation and experimental verification on deformation uniformity during forging-cogging process for aluminum alloy
Authors: Li Pengwei  Li Yirui  Cai Anhui  Wang Xin  Zhou Hongzhi 
Unit: Hunan Institute of Science and Technology   Hunan Engineering Research Center of Innovative Design and Manufacturing of Complex Structure Topology  Key Laboratory of Electromagnetic Equipment Design and Manufacturing of Hunan Province 
KeyWords: forging-cogging  deformation uniformity  multi-directional upsetting  grain refinement  2A14 aluminum alloy 
ClassificationCode:TG31
year,vol(issue):pagenumber:2022,47(8):1-6
Abstract:

  Deformation uniformity of forging-cogging is an important factor affecting the quality of forgings. Therefore, for 2A14 aluminum alloy, the strain field of forged-billet was simulated by finite element software Deform-3D. Then, by introducing average equivalent strain εave and deformation uniformity coefficient a, combined with the observation of grain morphology and 

the tensile test of mechanical properties, the deformation uniformity of “unidirectional upsetting” and “multi-directional upsetting” forging-cogging processes were quantitatively and qualitatively analyzed. The results show that the deformation uniformity of the “multi-directional upsetting” forging-cogging process is better than that of the “unidirectional upsetting” forging-cogging process, and the larger the accumulated strain amount is, the better the deformation uniformity and the weaker the anisotropy of mechanical properties are. In the process of multi-directional upsetting forging-cogging process for 2A14 aluminum alloy, with the increasing of accumulated strain amount, the grain refinement mechanism gradually changes from the grain crushing mechanism to the continuous dynamic recrystallization mechanism.
Funds:
湖南省自然科学基金青年项目(2020JJ5215);电磁装备设计与制造湖南省重点实验室开放基金项目(DC202007)
AuthorIntro:
作者简介:李鹏伟(1985-),男,博士,讲师,E-mail:mselpw@163.com;通信作者:周宏志(1972-),男,博士,教授,E-mail:zhoubox@sina.com
Reference:

[1]王祝堂. 铝材在国产大飞机上的应用[J]. 轻合金加工技术, 2016, 44(11): 1-8.


Wang Z T. Application of aluminum materials on domestic large aircrafts[J]. Light Alloy Manufaction Technology, 2016, 44(11): 1-8.


[2]黄同瑊, 秦宇, 晁代义, . 大尺寸Al-Cu-Mg-Mn 合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34 (S1): 325-327.


Huang T J, Qin Y, Chao D Y, et al. Study on homogenization process of large size Al-Cu-Mg-Mn alloy ingot [J]. Materials Review, 2020, 34S1: 325-327.


[3]陈楠, 刘薇娜. 镦拔工艺对4Cr5MoSiV1钢组织和性能的影响[J]. 热加工工艺,2021, 50(1): 92-94.


Chen N, Liu W N. Effect of upsetting and drawing process on microstructure and properties of 4Cr5MoSiV1 steel [J]. Hot Working Technology, 2021, 50(1): 92-94.


[4]郭强, 严红革, 张辉, . 多向锻造技术研究进展[J]. 材料导报, 2002, 21(2): 106-108.


Guo Q, Yan H G, Zhang H, et al. Research progress of multiple forging technology [J]. Materials Review, 2002, 21(2): 106-108.


[5]周立华, 骆静, 向渝. 始锻温度对自由锻造6061铝合金力学性能影响的研究[J]. 热加工工艺, 2020, 49(13): 109-119.


Zhou L H, Luo J, Xiang Y. Effect of initial forging temperature on mechanical properties of free-forging 6061 aluminum alloy [J]. Hot Working Technology, 2020, 49(13): 109-119.


[6]林新农, 代长安. 新型铝合金机械零件锻造工艺优化[J]. 热加工工艺, 2019, 48(13): 90-92.


Lin X N, Dai C A. Forging process optimization of new type aluminum alloy mechanical parts[J]. Hot Working Technology, 2019, 48(13): 90-92.


[7]贺佳阳, 吴吉文. 锥形砧镦粗工艺数值模拟及锥角优化研究[J]. 南方农机, 2020, 51(21): 129-130.


He J Y, Wu J W. Numerical simulation of upsetting process and optimization of cone angle for taper anvil [J]. China Southern Agricultural Machinery, 2020, 51(21): 129-130.


[8]郭强, 严红革, 陈振华, . 多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J]. 金属学报, 2006, 42(7): 739-744.


Guo Q, Yan H G, Chen Z H, et al. Effect of multiple forging process on micro-structure and mechanical properties of magnesium alloy AZ80[J]. Acta Metallurgica Sinica, 2006, 42(7): 739-744.


[9]黄东英, 张磊, 刘晓红. 7075铝合金多向锻造过程的元胞自动机数值模拟[J]. 锻压技术, 2021, 46(12): 13-19.


Huang D Y, Zhang L, Liu X H. Numerical simulation on cellular in multi-direction forging process of 7075 aluminum alloy[J]. Forging & Stamping Technology, 2021, 46(12): 13-19.


[10]Li P W, Li H Z, Huang L, et al. Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1677-1688.


[11]吴炬, 向国权, 程先华. 模具外接圆弧角对纯铝ECAE影响的有限元分析[J]. 上海交通大学学报,2005, 39(7): 1063-1065.


Wu J, Xiang G Q, Cheng X H. Finite element analysis of influence of curvature angle ψ of the outside corner on ECAE of pure aluminum [J]. Journal of Shanghai Jiaotong University, 2005, 39(7): 1063-1065.


[12]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1Method of test at room temperature [S].


[13]Sitdikov O, Sakai T, Goloborodko A, et al. Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging [J]. Materials Transactions, 2004, 45(7): 2232-2238.


[14]Sitdikov O, Sakai T, Goloborodko A, et al. Grain refinement in coarse-grained 7475 Al alloy during severe hot forging [J]. Philosophical Magazine, 2005, 85(11): 1159-1175.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com