Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Finite element analysis on multi-pass hot rolling process for Zr-1.0Sn-1.0Nb-0.1Fe alloy sheet
Authors: Wu Zehua1  Wang Kelu1  Deng Siying2  Song Hongwu2  Zhang Shihong2  Wang Ben3 
Unit: 1.School of Aeronautical Manufacturing Engineering  Nanchang Hangkong University 2.Shichangxu Innovation Center for Advanced Materials Institute of Metal Research Chinese Academy of Sciences 3.National Nuclear Baoti Zirconium Industry Co.  Ltd. 
KeyWords: Zr-1.0Sn-1.0Nb-0.1Fe alloy  thermal deformation behavior  multi-pass hot rolling  temperature correction  peak stress model 
ClassificationCode:TG335.5
year,vol(issue):pagenumber:2022,47(6):132-140
Abstract:

 The thermal deformation behavior of Zr-1.0Sn-1.0Nb-0.1Fe alloy under the conditions of deformation temperature of 550, 600, 650 and 700 , strain rate of 0.01, 0.1, 1 and 10 s-1 and maximum deformation amount of 70% was studied by isothermal hot compression experiment. Then, on the basis of considering deformation thermal effect, the true stress-ture strain curve was corrected by temperature, and the peak stress model was established on the basis of Arrhenius hyperbolic sine function equation. Furthermore, the multi-pass hot rolling process of Zr-1.0Sn-1.0Nb-0.1Fe alloy sheet at the initial temperature of 630 and the rolling speed of 30, 45 and 60 m·min-1 from the sheet thickness of 104 mm to 19 mm was simulated by Deform and compared with the experimental results of hot rolling to verify the accuracy of the finite element model. In addition, the influences of rolling speed on the rolled sheet temperature, rolling force and final sheet thickness during the hot rolling process were studied. The results show that with the increasing of rolling speed, the surface temperature and core temperature of rolled sheet increase, while the rolling force and the final sheet thickness decrease.

Funds:
能源局核能重大专项(20192X06002001)
AuthorIntro:
吴泽华(1995-),男,硕士研究生 E-mail:1289306859@qq.com 通信作者:邓偲瀛(1987-),女,博士,助理研究员 E-mail:sydeng@imr.ac.cn
Reference:

 [1]王旭峰, 李中奎,周军,等. 锆合金在核工业中的应用及研究进展[J]. 热加工工艺,201241(2)71-74.


 


Wang X F, Li Z K, Zhou J, et al. Application and research progress of zirconium alloy in nuclear industry[J]. Hot Working Technology, 2012, 41(2): 71-74.


 


[2]Zou D, Luan B, Xiao D. Influences of strain rate on the plastic deformation mechanism of zirconium alloy[J]. Rare Metal Materials & Engineering, 2014, 43(8): 1897-1901.


 


[3]Murty K L, Charit I. Texture development and anisotropic deformation of zircaloys[J]. Progress in Nuclear Energy, 2006, 48(4): 325-359.


 


[4]董艺伟. Zr92Ti8合金热变形行为的研究[D]. 秦皇岛:燕山大学,2018.


 


Dong Y W. Study on Hot Deformation Behavior of Zr92Ti8 Alloy[D]. Qinhuangdao: Yanshan University, 2018.


 


[5]Saxena K K, Jha S K, Pancholi V, et al. Role of activation energies of individual phases in twophase range on constitutive equation of Zr2.5Nb0.5Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 172-183.


 


[6]白海龙, 严继康,刘宝权,等. 基于Deform的热轧3003铝板带温度场的三维有限元模拟[J]. 热加工工艺,201544(3)115-122.


 


Bai H L, Yan J K, Liu B Q, et al. Threedimensional finite element simulation of temperature field of hot rolled 3003 aluminum strip based on Deform[J]. Hot Working Technology, 2015, 44(3): 115-122.


 


[7]杨德辉, 赵松涛,陶华. 基于DeformAZ31镁合金板材挤压工艺的有限元模拟[J]. 热加工工艺,201544(13)157-162.


 


Yang D H, Zhao S T, Tao H. Finite element simulation of extrusion process of AZ31 magnesium alloy sheet based on Deform [J]. Hot Working Technology, 2015, 44(13): 157-162.


 


[8]Riahifar R, Serajzadeh S. Threedimensional model for hot rolling of aluminum alloys[J]. Materials & Design, 2007, 28(8): 2366-2372.


 


[9]陈灵, 谭自盟,段亚菲,等. 接触传热对7075铝合金热轧影响的数值模拟[J]. 模具工业,201743(7)25-29.


 


Chen L, Tan Z M, Duan Y F, et al. Numerical simulation of the effect of contact heat transfer on hot rolling of 7075 aluminum alloy[J]. Mold Industry, 2017. 43(7): 25-29.


 


[10]陶琳, 程明,张伟红,等. Inconel 625合金高温高速热变形行为[J]. 材料热处理学报,201233(9)55-59.


 


Tao L, Cheng M, Zhang W H, et al. Hot deformation behavior of Inconel 625 alloy at high temperature and high speed[J]. Journal of Material Heat Treatment, 2012, 33(9): 55-59.


 


[11]张伟红, 张士宏. NiTi合金热压缩实验数据的修正及其本构方程[J]. 金属学报,200642(10)1036-1040.


 


Zhang W H, Zhang S H. Modification of experimental data and constitutive equation of NiTi alloy under hot compression[J]. Acta Metallurgica Sinica, 2006, 42(10): 1036-1040.


 


[12]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7): 1545-1558.


 


[13]Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stressstrain behavior of alloy 304L[J]. Metallurgical & Materials Transactions A, 1994, 25(12): 2737-2752.


 


[14]Devadas C, Baragar D, Ruddle G, et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads[J]. Metallurgical Transactions A, 1991, 22(2): 321-333.


 


[15]刘文义. 7085铝合金热加工力学行为及微观组织演变规律研究[D]. 重庆:重庆大学,2014.


 


Liu W Y. Study on Hot Working Mechanical Behavior and Microstructure Evolution of 7085 Aluminum Alloy[D]. Chongqing: Chongqing University, 2014.


 


[16]孙国强, 刘勇,田保红,等. Cu0.8Mg0.15Ce合金热变形行为与机制研究[J]. 中国稀土学报,201937(1)76-83.


 


Sun G Q, Liu Y, Tian B H, et al. Study on hot deformation behavior and mechanism of Cu0.8Mg0.15Ce alloy[J]. Chinese Journal of Rare Earths, 2019, 37(1): 76-83.


 


[17]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


 


[18]Xiao Y H, Guo C, Guo X Y. Constitutive modeling of hot deformation behavior of H62 brass[J]. Materials Science and Engineering A, 2011, 528(21): 6510-6518.


 


[19]Medina S F, Hernandez C A. General expression of the ZenerHollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.


 


[20]杜辉. 带钢在轧制过程中厚度变化规律的探究[J]. 科技致富向导,2011(14)137-140.


 


Du H. Investigation on the law of thickness variation of strip steel during rolling[J]. Keji Zhifu Xiangdao, 2011(14): 137-140.


 


[21]曹光明, 孙彬,邹颖,等. 板带热连轧过程氧化铁皮厚度变化的数值模拟[J]. 钢铁研究学报,201022(8)13-16.


 


Cao G M, Sun B, Zou Y, et al. Numerical simulation of thickness change of raw iron terminated iron terminal[J]. Journal of Iron and Steel Research, 2010, 22(8): 13-16.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com