Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation and process analysis on hot forging for large machete plate forgings
Authors: Feng Chao  Wang Rongqi  Gao Ke  Han Haochen 
Unit: Key Laboratory of CNC Equipment Reliability  Ministry of Education  School of Mechanical and Aerospace Engineering   Jilin University 
KeyWords: large forgings machete plate forming curvature free forging  high\|temperature deformation 
ClassificationCode:TG316
year,vol(issue):pagenumber:2022,47(6):26-34
Abstract:

 For the large machete plate forgings, the high\|temperature free forging process was studied and analyzed. Then, the forging process of pre\|fabricated unequal thickness billet to form machete plate forgings was simulated by Deform\|3D software, and the influences of different process parameters on forming curvature of machete plate forgings in forming process were analyzed. Meanwhile, the grain recrystallization model and damage accumulation model were integrated into the simulation process to predict the grain stucture evolution and cracking behavior inside the forgings. The results show that  the ratio of curvature radius to plate width for machete plate of forgings after forming increases with increasing of thickness ratio of inner and outer sides for the preform and the ratio of final forging feed\|length to plate thickness, and decreases with increasing of the ratio of plate width to plate thickness in final forging. Based on the simulation results, the estimated relationship between each process parameter and the curvature radius of machete plate forgings after forming is established. Meanwhile, the process is beneficial to increase the utilization rate of materials, improves the grain structure inside the forgings and controls the occurrence of damage and cracking.

Funds:
国家自然科学基金青年基金资助项目(51805204);吉林省教育厅“十三五”科技项目(JJKH20200976KJ)
AuthorIntro:
冯超(1987-),男,博士,讲师 Email:fengchao@jlu.edu.cn
Reference:

 [1]卢章树, 高春鹏. DFD03风洞大弯刀尾撑装置设计[J]. 航空精密制造技术, 2016, 52(2): 40-43.


 


Lu Z S, Gao C P. Design of DFD03 wind tunnel large machetes tail device[J]. Aviation Precision Manufacturing Technology, 2016, 52(2): 40-43.


 


[2]陈德华, 唐良锐, 许新, . 跨声速风洞试验支撑装置[P]. 中国: CN105527069A 2016-04-27.


 


Chen D H, Tang L R, Xu X, et al. Support device for transonic wind tunnel test[P]. China: CN105527069A2016-04-27.


 


[3]任秀凤, 牛余刚, 银伟, . 大型冲孔类自由锻环锻造工艺方法[J]. 金属加工:热加工, 2017(13): 14-15.


 


Ren X F, Niu Y G, Yin W, et al. Free forging process of large punching ring[J]. MW Metal Forming, 2017(13): 14-15.


 


[4]张梓煜, 曾攀, 雷丽萍. 基于机器学习的大锻件拔长变形预测[J]. 锻压技术, 2020, 45(10): 209-216.


 


Zhang Z Y, Zeng P, Lei L P. Prediction of drawing deformation for heavy forgings based on machine learning[J]. Forging & Stamping Technology, 2020, 45(10): 209-216.


 


[5]骆俊廷, 赵静启, 杨哲懿, . 基于Deform软件二次开发和BP神经网络的TA15多向锻造微观组织预报[J].航空学报,2021,42(12):327-344.


 


Luo J T, Zhao J Q, Yang Z Y, et al. Microstructure prediction of multidirectional forging for TA15 alloy by the secondary [J]. Acta Aeronautica et Astronautica Sinica, 2021,42(12):327-344.


 


[6]何利东, 李海荣. 物理模拟及DEFORM仿真技术在大型锻件镦粗工艺中的应用[J]. 锻压装备与制造技术, 2020, 55(6): 100-104.


 


He L D, Li H R. Application of physical simulation and DEFORM simulation technology in upsetting process improvement of large forgings[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(6): 100-104.


 


[7]高文成. 扇形板的双弧形板材锻造[J]. 一重技术, 2019, (6): 63-6471.


 


Gao W C. Segments forged with doublecurve plate[J]. CFHI Technology, 2019, (6): 63-6471.


 


[8]Mirzadeh H, Najafizadeh A. Hot deformation and dynamic recrystallization of 17-4PH stainless steel[J]. ISIJ International, 2013, 53(4): 680-689.


 


[9]Feng C, Zhang L, Wu J, et al. Ductile fracture behavior and flow stress modeling of 17-4PH martensitic stainless steel in tensile deformation at high temperature[J]. Materials Research Express, 2020, 7(4): 046503.


 


[10]陈波. 17\|4PH钢热变形特性与高温铁素体析出条件研究[D]. 上海:上海交通大学, 2018.


 


Chen B. Study on the Thermal Deformation Characteristics of 17\|4PH Steel and the Precipitation Conditions of δferrite[D]. Shanghai:Shanghai Jiaotong University,  2018.


 


[11]胡伟星, 刘耀华, 孙贤熙, . 改善17\|4PH不锈钢热塑性和机械性能的途径[J]. 上海金属, 1993, 15(6): 39-41.


 


Hu W X, Liu Y H, Sun X X, et al. Technical ways of improving the hot ductility and mechanical properties of stainless steel 17\|4PH[J]. Shanghai Metals, 1993, 15(6): 39-41.


 


[12]孙曙宇, 傅建. 文本模式下的DEFORM应用[J]. 锻压装备与制造技术, 200843(1): 99-102.


 


Sun S Y, Fu J. Application of DEFORM based on text only mode[J]. China Metalforming Equipment & Manufacturing Technology, 200843(1): 99-102.


 


[13]李馨家. 基于DEFORM3D的热锻成形多尺度模拟软件的开发与应用[D]. 上海:上海交通大学, 2016.


 


Li X J. Development and Application of Multiscale Simulation Software Based on Deform3D for Hot Forging[D]. Shanghai:Shanghai Jiaotong University,  2016

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com