Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Fatigue life analysis and simulation model modification on TC4 titanium alloy forgings
Authors: Fang Xiurong1  Wang Ziliang  Yang Jinhui  Liu Yan 
Unit:  
KeyWords: TC4 titanium alloy forgings  fatigue life  model modification  deformation temperature  deformation degree 
ClassificationCode:TG319
year,vol(issue):pagenumber:2022,47(6):1-8
Abstract:

 Influences of deformation temperature and deformation degree for forging on fatigue life of TC4 titanium alloy forgings were studied by physical experiments. Then, the simulation model of fatigue life for TC4 titanium alloy forgings was established and modified by combining finite element with physical experiment, and the simulation model was verified. The results show that compared with the raw materials, the forged TC4 titanium alloy forgings have longer fatigue life, and the forgings obtained by controlling the deformation temperature at α+β phase deformation temperature have the longest fatigue life. At the optimum deformation temperature, when the deformation degree is controlled at about 50%, the fatigue life of forgings is the longest. Considering the influence of forging deformation temperature zone, the forging frequency should be increased as high as possible. Furthermore, the residual stress of forgings is the main factor affecting the accuracy of the simulation model, and the verification shows that the simulation accuracy can be greatly improved if the maximum equivalent residual stress of actual forgings is engaged, which lays the foundation for in\|depth analysis on the influence of forging process parameters on the fatigue life of TC4 titanium alloy forgings.

Funds:
国家自然科学基金面上项目(51775427,52175145)
AuthorIntro:
方秀荣(1971-),女,博士,教授 Email:fangxr098@163.com
Reference:

 [1]刘世锋, 宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,202040(3): 77-94.


 


Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.


 


[2]杨晶, 任晓龙,王涛,等. 海洋工程用超大规格Ti80钛合金锻坯制备研究[J]. 锻压技术,202146(2): 19-22.


 


Yang JRen X LWang Tet al. Research on preparation of oversized forging billet for Ti80 titanium alloy in ocean engineering [J]. Forging & Stamping Technology2021,46(2):19-22.


 


[3]李鸿江, 于洋, 宋晓云, . 新型Ti6554钛合金热变形行为及热加工图[J]. 稀有金属,202044(5): 462-468.


 


Li H J, Yu Y, Song X Y, et al. Thermal deformation behavior and processing map of a new type of Ti6554 alloy[J]. Chinese Journal of Rare Metals, 2020,44(5):462-468.


 


[4]程巨强, 史超. 钛合金的组织、性能及加工技术研究进展[J]. 热加工工艺,201645(2): 5-813.


 


Cheng J Q, Shi C. Study progress of microstructure, properties and processing technology of titanium alloys[J]. Hot Working Technology, 2016, 45(2): 5-8,13.


[5]蒋泽, 许希武,郭树祥,等. 基于材料细观特性的TC4钛合金疲劳裂纹萌生寿命仿真[J]. 机械强度,202143(2): 425-433.


 


Jiang Z, Xu X W, Guo S X, et al. Simulation of fatigue crack initiation life of TC4 titanium alloy based on its mesoscopic properties[J]. Journal of Mechanical Strength, 2021, 43(2): 425-433.


 


[6]Dong X D, Liu D XSun Y F,et al. The effects of machined workpiece surface integrity on the fatigue life of TC21 titanium alloy[J]. Advanced Materials Research, 2012, 1766: 382-389.


 


[7]樊荣, 李秀红,李文辉,等. 基于ABAQUS/FESAFETC4钛合金板材疲劳寿命仿真与实验[J]. 表面技术,201746(1): 158-163.


 


Fan R, Li X H, Li W H, et al. Fatigue life simulation and experiment of TC4 titanium alloy board based on ABAQUS/FESAFE[J]. Surface Technology, 2017, 46(1): 158-163.


 


[8]周晓虎, 刘卫,郝芳,等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响[J]. 锻压技术,202045(6): 29-35.


 


Zhou X HLiu WHao Fet al. Influence of quasiβ forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forging & Stamping Technology, 2020, 45(6):29-35.


 


[9]Wu G Q, Shi C L Sha Wet al. Effect of microstructure on the fatigue properties of Ti6Al4V titanium alloys[J]. Materials and Design, 2012, 46(2): 668-674.


 


[10]Zhang M QHan F B, Tang B, et al. Effects of microstructure on high cycle fatigue properties of dualphase Ti alloy: Combined nonlocal CPFE simulations and extreme value statistics[J]. Journal of Materials Research and Technology, 2020, 9(3): 5991-6000.


 


[11]宋松. 基于连续损伤力学的Ti6Al4V钛合金高低周复合疲劳损伤研究[D]. 天津:天津大学,2018.


 


Song S. The Research of Combined High and Low Cycle Fatigue Damage of Ti6Al4V Titanium Alloy Based on the Continuum Damage Mechanics[D]. TianjinTianjin University, 2018.


 


[12]周渝庆, 张祥. 机械紧固件用新型钛合金的锻造温度优化 [J]. 锻压技术,202045(1): 35-40.


 


Zhou Y QZhang X. Optimization on forging temperature of new titanium alloy for mechanical fasteners [J]. Forging & Stamping Technology2020,45(1):35-40.


 


[13]孙世仁, 刘虹,陈文琳,等. 基于有限元软件的锻造工艺参数对牵引拉杆成形的影响分析[J]. 热加工工艺,202049(15): 68-72.


 


Sun S R, Liu H, Chen W L, et al. Influence of forging process parameters on forming of traction rod based on finite element software[J]. Hot Working Technology, 2020, 49(15): 68-72.


 


[14]Yu W X, Li M Q, Luo J. Effect of processing parameters on microstructure and mechanical properties in high temperature deformation of Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2009, 38(1): 19-24.


 


[15]刘伟东, 屈华. TC4合金(α+β)/β转变温度的金相法测定与理论计算[J]. 特种铸造及有色合金,201434(11): 1210-1213.



 


Liu W D, Qu H. Metallographic measurement and theoretical calculation of (α+β)/β transformation temperature of TC4 alloy[J]. Special Casting and Nonferrous Alloys, 2014, 34(11): 1210-1213.


 


[16]GB/T 30752021, 金属材料—疲劳试验—轴向力控制方法[S].


 


GB/T 30752021, Metallic materialsFatigue testingAxial forcecontrolled method[S].


 


[17]Dong S, Liu X D, Shan Y C, et al. Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel[J]. International Journal of Fatigue, 2016, 93:173-183.


 


[18]方秀荣, 邵艳茹,陆佳,等. 锻造工艺参数对TC4钛合金锻件残余应力的影响[J]. 锻压技术,202146(3): 1-8.


 


 


 


 


Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com