Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of heating method on formability and mechanical properties for magnesium alloy sheet in warm incremental forming
Authors: Zheng Zhiyang  Chen Yuxiang  Liao Juan 
Unit: Fuzhou University 
KeyWords: magnesium alloy  warm incremental forming  heating method  formability  mechanical properties 
ClassificationCode:TG306
year,vol(issue):pagenumber:2022,47(2):49-55
Abstract:

 The temperature distribution of sheet is affected by different heating methods. Meanwhile, the temperature difference appears in the different positions of sheet,which resulting in material internal performance difference. In view of the above problems, the magnesium alloy sheets were heated by two overall heating methods of carbon fiber electric pipe heating and hot air heating, and the influences of heating methods and forming temperature on the formability of magnesium alloy sheet and the mechanical properties of its formed parts were studied by forming variable-angle cone parts and square cone parts with constant forming angle. The results show that in the forming temperature range of 150-275 ℃, the formability of magnesium alloy sheet is enhanced with the increasing of forming temperature. When the forming temperature is 250 ℃, the magnesium alloy sheet has better formability, and its formed parts also obtain the best mechanical properties. At the same forming temperature, the magnesium alloy sheet heated by carbon fiber electric pipe heating has better formability, and its formed parts also have better mechanical properties. 

Funds:
国家自然科学基金资助项目(51805087);福建省自然科学面上基金(2018J01761, 2018J01764)
AuthorIntro:
作者简介:郑志洋(1994-),男,硕士,E-mail:n180227088@fzu.edu.cn;通信作者:廖娟(1984-),女,博士,教授,E-mail:jliao@fzu.edu.cn
Reference:

[1]Kleiner M, Geiger M, Klaus A. Manufacturing of lightweight components by metal forming [J]. CIRP Annals-Manufacturing Technology, 2003, 52(2): 521-542.


[2]Billur E, Altan T. Challenges in forming advanced high strength steels[A]. New Developments in Sheet Metal Forming [C]. Sttutgart2010.


[3]Wong T W, Hadadzadeh A, Wells M A. High temperature deformation behavior of extruded AZ31B magnesium alloy [J]. Journal of Materials Processing Technology, 2017, 251(36): 360-368.


[4]Pollock M T. Weight loss with magnesium alloys [J]. Science, 2010, 328(5981):986-987.


[5]Kulekci M K. Magnesium and its alloys applications in automotive industry [J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(9-10): 851-865.


[6]Mordike B LEbert T. Magnesium: Properties-applications-potential [J]. Materials Science and Engineering: A, 2001, 3021: 37-45.


[7]Agnew S R, Mehrotra P, Lillo T M, et al. Texture evolution of five wrought magnesium alloys during route a equal channel angular extrusion: experiments and simulations [J]. Acta Materialia, 2005, 53(11): 3135-3146.


[8]Ambrogio G, Filice L, Manco G L. Warm incremental forming of magnesium alloy AZ31 [J]. CIRP Annals-Manufacturing Technology, 2008, 57(1): 257-260.


[9]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures [J]. CIRP Annals-Manufacturing Technology, 2006, 55(2): 793-816.


[10]Emmens W C, Sebastiani G, Boogaard A H V D. The technology of incremental sheet forming-A brief review of the history[J]. Journal of Materials Processing Technology, 2010, 210(8): 981-997.


[11]Malhotra R, Xue L, Belytschko T, et al. Mechanics of fracture in single point incremental forming [J]. Journal of Materials Processing Technology, 2012, 212(7): 1573-1590.


[12]史鹏涛, 李言, 杨明顺,. 液体介质加热的镁合金板料热渐进成形极限研究 [J]. 机械强度, 2018, 40(2): 412-417.


Shi P T, Li Y, Yang M S, et al. Research on the forming limit of incremental thermal forming of magnesium alloy sheet heated by liquid medium [J]. Journal of Mechanical Strength, 2018, 40(2): 412-417.


[13]张三, 唐桂华, 李克杰,. 基于响应曲面法的AZ31B镁合金油浴加热渐进成形性研究 [J]. 锻压技术, 2020, 45(5): 87-94.


Zhang S, Tang G H, Li K J, et al. Study on formability of incremental forming by oil bath heating for AZ31B magnesium alloy based on response surface method [J]. Forging & Stamping Technology, 2020, 45(5): 87-94.


[14]Ji Y H, Park J J. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature [J]. Journal of Materials Processing Technology, 2008, 201(1-3): 354-358.


[15]André L, Kurz G, José V H, et al. Experimental study on incremental sheet forming of magnesium alloy AZ31 with hot air heating [J]. Procedia Manufacturing, 2018, 15: 1192-1199.


[16]Duflou J R, Callebaut B, Verbert J, et al. Laser assisted incremental forming: Formability and accuracy improvement [J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 273-276.


[17]Duflou J R, Callebaut B, Verbert J, et al. Improved SPIF performance through dynamic local heating [J]. International Journal of Machine Tools & Manufacture, 2008, 48(5): 543-549.


[18]Wang Z H, Cai S, Chen J. Experimental investigations on friction stir assisted single point incremental forming of low-ductility aluminum alloy sheet for higher formability with reasonable surface quality [J]. Journal of Materials Processing Technology, 2020, 277: 116488.


[19]Xu D K, Wu W C, Malhotra R, et al. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming [J]. International Journal of Machine Tools & Manufacture, 2013, 73(10): 37-46.


[20]Fan G Q, Gao L, Hussain G, et al. Electric hot incremental forming: A novel technique [J]. International Journal of Machine Tools & Manufacture, 2008, 48(15): 1688-1692.


[21]Ambrogio G, Filice L, Gagliardi F. Formability of lightweight alloys by hot incremental sheet forming [J]. Materials & design, 2012, 34(2): 501-508.


[22]Hussain G, Gao L, Dar N U. An experimental study on some formability evaluation methods in negative incremental forming [J]. Journal of Materials Processing Technology, 2007, 186(1-3): 45-53.


[23]Hussain G, Gao L. A novel method to test the thinning limits of sheet metals in negative incremental forming [J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 419-435.


[24]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


[25]张青来, 肖富贵, 郭海玲,. 各向异性对镁合金板材渐进成形的影响及微观组织演变 [J]. 中国有色金属学报, 2009, 19(5): 800-807.


Zhang Q L, Xiao F G, Guo H L, et al. Effect of anisotropy on incremental forming of magnesium alloy sheet and its microstructure evolution [J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5): 800-807.


[26]张三, 唐桂华,沈建冬,等. 成形温度对镁合金温热渐进成形微观组织及断口形貌的影响 [J]. 塑性工程学报,2021, 28(3): 90-97.


 


Zhang S, Tang G H, Shen J D, et al. Influence of forming temperature on microstructure and fracture morphology of magnesium alloy during warm incremental sheet forming [J]. Journal of Plasticity Engineering, 2021, 28(3): 90-97.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com