Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Surface roughness of 7050 aluminum alloy strengthened by ultrasonic rolling extrusion
Authors: Chen Jian1  Liu Fei2 3  Wang Xiaoqiang2 3 
Unit: 1. Jutong Elevator College Henan Mechanical and Electrical Vocational College 2. School of Mechatronics Engineering  Henan University of Science and Technology 3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province 
KeyWords: ultrasonic rolling extrusion strengthening  7050 aluminum alloy  surface roughness  orthogonal test  exponential function predictive model method  gray relative analysis method 
ClassificationCode:TG376.1
year,vol(issue):pagenumber:2021,46(12):148-153
Abstract:

 In order to obtain the sensitivity of the processing parameters on surface roughness in the process of ultrasonic rolling extrusion strengthening for 7075 alumiunm alloy, the orthogonal test on surface roughness of 7050 aluminum alloy strengthened by ultrasonic rolling extrusion was carried out, and based on surface roughness test results, the influence degree of processing parameters on surface roughness were determined by range analysis method, exponential function prediction model method and grey correlation analysis method. The results show that in the process of ultrasonic rolling extrusion strengthening for 7050 aluminum alloy, the order of influence degree of processing parameters on surface roughness is workpiece rotate speed, static pressure and feeding speed, and the optimal processing parameter level of surface roughness is n=350 r·min-1, F=400 N, f=10 mm·min-1. Furthermore, the three different methods are mutually tested, and the sensitivity of processing parameters on the surface roughness is consistent. Thus, in the process of ultrasonic rolling extrusion strengthening, the best surface quality of the workpiece can be achieved by reasonably controlling the processing parameters, which have significant influence on the surface roughness.

Funds:
国家自然科学基金资助项目(U1804145)
AuthorIntro:
作者简介:陈 捡(1985-),男,硕士,讲师 E-mail:263718315@qq.com 通信作者:刘 飞(1989-),男,硕士 E-mail:liufei07104517@163.com
Reference:

 [1]   Brotzu A, Lellis G D, Felli F, et al. Study of defect formation in Al 7050 alloys[J]. Procedia Structural Integrity, 2017, 3: 246-252.


 


[2]   马伟. 航空铝合金薄壁件切削过程及加工变形仿真分析[D]. 长春: 吉林大学, 2020.


 


Ma W. Simulation Analysis of Cutting Process and Machining Deformation of Aviation Aluminum Alloy Thinwalled Parts[D]. Changchun: Jilin University, 2020.


 


[3]   Bozdana A T, Gind N N Z, Li H. Deep cold rolling with ultrasonic vibrationsa new mechanical surface enhancement technique[J]. International Journal of Machine Tools and Manufacture, 2005, 45(6): 713-718.


 


[4]   张勤俭, 王会英, 徐文胜. 超声挤压强化技术的研究现状及发展前景[J]. 电加工与模具, 2013, (6): 11-14.


 


Zhang Q J, Wang H Y, Xu W S. The research status and developing prospect of ultrasonic extrusion strengthening technology[J]. Electrical Machining and Grinding Tools, 2013, (6): 11-14.


 


[5]   Wang G QLei M KGuo D M. Interactions between surface integrity parameters on AISI 304 austenitic stainless steel components by ultrasonic impact treatment[J]. Procedia Cirp2016, 45: 323-326.


 


[6]   Liu D, Liu D X, Zhang X H, et al. Surface nanocrystallization of 17-4 precipitationhardening stainless steel subjected to ultrasonic surface rolling process[J]. Materials Science and Engineering A, 2018, 726(30): 69-81.


 


[7]   Zhang Q L, Hu Z Q, Su W W, et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J]. Surface and Coatings Technology, 2017, 321(15): 64-73.


 


[8]   蒋书祥, 郑建新. 二维超声滚压7050铝合金的微观组织与力学性能[J]. 金属热处理, 2018, 43(5): 116-119.


 


Jiang S X, Zheng J X. Microstructure and mechanical properties of 7050 aluminum alloy treated by two dimensional ultrasonic rolling[J]. Heat Treatment of Metals, 2018, 43(5): 116-119.


 


[9]   罗傲梅, 郭伟. -扭复合振动超声深滚加工表面强化研究[J]. 表面技术, 2015, 44(5): 106-110.


 


Luo A M, Guo W. Research on surface strengthening by ultrasonic deep rolling with longitudinaltorsional vibration[J]. Surface Technology, 2015, 44(5): 106-110.


 


[10]侯雅丽. 纵—扭复合振动超声深滚加工表面强化机理研究[D]. 焦作: 河南理工大学, 2015.


 


Hou Y L. Research on Surface Enhancement Mechanism of Ultrasonic Deep Rolling With Longitudinaltorsional Vibration[D]. Jiaozuo: Henan Polytechnic University, 2015.


 


[11]聂文忠, 马亚健, 陆建民, . 纵扭复合超声振动铣削K9玻璃表面质量的研究[J]. 机床与液压, 2020, 48(20): 45-48.


 


Nie W Z, Ma Y J, Lu J M, et al. Study on surface quality of K9 glass by longitudinal torsional composite ultrasonic vibration milling[J]. Machine Tool & Hydraulics, 2020, 48(20): 45-48.


 


[12]马亚健, 聂文忠, 陆建民, . 纵扭复合超声振动铣削SiCp/Al表面质量研究[J]. 机床与液压, 2020, 48(8): 45-48.


 


Ma Y J, Nie W Z, Lu J M, et al. Study on surface quality of SiCp/Al by longitudinal and torsional composite ultrasonic vibration milling[J]. Machine Tool & Hydraulics, 2020, 48(8): 45-48.


 


[13]林佳杰, 魏昕, 杨宇辉, . 工程陶瓷纵扭复合超声振动螺旋磨削制孔表面质量研究[J]. 机电工程, 2020, 37(7): 806-810.


 


Lin J J, Wei X, Yang Y H,et al. Surface quality of helical grinding holes of engineering ceramics with longitudinaltorsional composite ultrasonic vibration[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(7): 806-810.


 


[14]赵波, 别文博, 王晓博, . -扭复合超声钻削TC4钛合金振动系统设计与试验[J]. 航空学报, 2020, 41(1): 291-303.


 


Zhao B, Bie W B, Wang X B, et al. Design and experimental investigation on vibration system of longitudinaltorsional ultrasonic drilling TC4 titanium alloy[J]. Chinese Journal of Aeronautics, 2020, 41(1): 291-303.


 


[15]姚国林, 徐红玉, 王晓强, . 风电轴承套圈超声滚挤压表层物理力学性能预测模型[J]. 塑性工程学报, 2020, 27(7): 109-116.


 


Yao G L, Xu H Y, Wang X Q, et al. Prediction model of physical and mechanical properties of ultrasonic roller extrusion surface of wind power bearing ring[J]. Journal of Plasticity Engineering, 2020, 27(7): 109-116.


 


[16]徐红玉, 刘立波, 崔凤奎. 风电轴承套圈超声滚压强化残余应力形成规律分析[J]. 塑性工程学报, 2019, 26(5): 125-132.


 


Xu H Y, Liu L B, Cui F K. Analysis of residual stress formation in ultrasonic rolling strengthening of wind power bearing rings[J]. Journal of Plasticity Engineering, 2019, 26(5): 125-132.


 


[17]王晓强, 徐少可, 崔凤奎, . 轴承套圈表面超声滚挤压加工硬化模型[J]. 塑性工程学报, 2019, 26(3): 231-237.


 


Wang X Q, Xu S K, Cui F K, et al. Ultrasonic roller extrusion hardening model for bearing ring surface[J]. Journal of Plasticity Engineering, 2019, 26(3): 231-237.


 


[18]郑建新, 任元超. 7050铝合金二维超声滚压加工表面完整性综合评价[J]. 中国机械工程, 2018, 29(13): 1622-1626.


 


Zheng J X, Ren Y C. Comprehensive assessment of surface integrity in two dimensional ultrasonic rolling 7050 aluminum alloys[J]. China Mechanical Engineering, 2018, 29(13): 1622-1626.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com