Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation on cellular automata in multi-direction forging process of 7075 aluminum alloy
Authors: Huang Dongying  Zhang Lei  Liu Xiaohong 
Unit: Key Laboratory of New Processing Technology for Nonferrous Metals and Materials Guangxi 
KeyWords: cellular automata  7075 aluminum alloy  multi-direction forging  average grain size grain distribution 
ClassificationCode:TG319
year,vol(issue):pagenumber:2021,46(12):13-19
Abstract:

 In order to research the reliability of numerical simulation on cellular automata (CA) of microstructure evolution for 7075 aluminum alloy before and after strong plastic deformation, based on the true stress-true strain curve of hot compression,  models of recrystallization, dislocation density, rheological stress and nucleation rate for 7075 aluminum alloy were established, and the multi-directional forging process of 7075 aluminum alloy  was simulated by CA method. Then, the grain distribution and grain evolution of the alloy after simulation were analyzed, and the experimental results of the alloy before and after multi-directional forging obtained by the electron backscatter diffraction (EBSD) were compared and analyzed. The results show that the average grain sizes of the alloy obtained by simulation and experiment are 6.813 and 6.57 μm respectively, and the sizes and distribution of grain in the alloy before and after forging obtained by simulation are consistent with the experimental results, indicating that the simulation results of the multi-directional forging process for 7075 aluminum alloy by CA method are in good agreement with the experimental results. Thus, CA method has certain credibility for the prediction of average grain sizes and the observation of grain distribution characterization for the alloy.

Funds:
广西大学有色金属及特色材料加工重点试验室开放基金(2020GXYSOF14)
AuthorIntro:
作者简介:黄东英(1994-),女,硕士研究生 E-mail:1811301007@st.gxu.edu.cn 通信作者:刘晓红(1980-),女,硕士,副教授,硕士生导师
Reference:

 [1]Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Materials Science and Engineering A, 1997, 225: 135-144.


[2]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280: 102-107.


[3]田福泉, 崔建忠. 超高强铝合金的显微组织[J]. 轻合金加工技术,200634 (2): 48-53.


Tian F Q, Cui J Z. Microstructures of ultra high strength aluminum alloys [J]. Light Alloy Fabrication Technology, 2006, 34(2): 48-53.


[4]Bi J, Sun K, Liu R, et al. Effect of ECAP pass number on mechanical properties of 2A12 Al alloy [J]. Journal of Wuhan University of TechnologyMaterials Science Edition, 2008, 23(1): 71-73.


[5]董蔚霞, 王晓溪,夏华明,等. 新型等径角挤压工艺下的5052铝合金变形行为的有限元模拟 [J]. 精密成形工程,2015(3)43-47.


Dong W X, Wang X X, Xia H M, et al. Finite element simulation of 5052 aluminum alloy deformation behavior in a new type of equal channel [J]. Journal of Netshape Forming Engineering, 2015, (3)43-47.


[6]蒋方敏, 吴运新,张涛,等. 基于元胞自动机法的7055铝合金动态再结晶模拟研究[J].热加工工艺, 2017, 46 (12): 235-238242.


Jiang F M, Wu Y X, Zhang T, et al. Study on dynamic recrystallization simulation of 7055 aluminum alloy based on cellular automata method [J]. Hot Working Technology, 2017,46(12):235-238, 242.


[7]余新平, 董洪波. TC21钛合金β锻动态再结晶行为及晶粒尺寸预测[J].塑性工程学报, 2015, 22 (1): 39-45.


Yu X P, Dong H B. Prediction of dynamic recrystalization and grain size of TC21 titanium alloy in β forging [J]. Journal of Plasticity Engineering, 2015, 22 (1): 39-45.


[8]靳舜尧, 唐振宇,黄重国. 5A02铝合金薄壁异形管内高压成形数值模拟及试验[J].稀有金属, 2020, 44(11):1121-1128.


Jin S Y, Tang Z Y, Huang Z G. Numerical simulation and experiment of internal high pressure formingIHPFof 5A02 aluminum alloy thinwalled shaped tubes[J]. Chinese Journal of Rare Metals, 2020, 44 (11): 1121-1128.


[9]黄始全. 7050铝合金锻造过程动态再结晶元胞自动机模拟[D]. 长沙:中南大学, 2009.


Huang S Q. Cellular Automata Simulation of Dynamic Recrystallization in Forging Process of 7050 Aluminum Alloy [D]. Changsha: Central South University, 2009.


[10]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science, 2000, 45 (2): 103-189.


[11]康春爽. 铸态7075铝合金筒形件强力热反旋微观组织演变有限元数值模拟[D]. 南昌:南昌航空大学, 2018.


Kang C S. FE Analysis of Microstructure Evolution of Cast 7075 Aluminum Cylindrical During the Hot Power Backward Spinning Process [D]. Nanchang: Nanchang Hangkong University, 2018.


[12]潘复生, 张丁菲. 铝合金及应用[M]. 北京:化学工业出版社, 2006.


Pan F S, Zhang D F. Aluminum Alloy and Its Application [M]. Beijing:Chemical Industry Press, 2006.


[13]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49 (16): 3163-3175.


[14]陶慧, 邓文杰, 黄甜甜, . 多向锻造与时效处理对7075铝合金强塑性的影响[J]. 热加工工艺, 2019,(9): 137-139.


Tao H, Deng W J, Huang T T, et al. Effect of multidirectional forging and aging treatment on strength and plasticity of 7075 aluminum alloy [J]. Hot Working Technology, 2019,(9): 137-139.


[15]Sitdikov O, Sakai T, Goloborodko A, et al. New grain formation in a coarsegrained 7475 Al alloy during severe hot forging [J]. Materials Science Forum, 2004, 467: 421-426.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com