Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of cold rolling deformation amount on microstructure and tensile properties of solid solution BT22 titanium alloy plate for sensor
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG146
year,vol(issue):pagenumber:2021,46(10):93-98
Abstract:

 In order to improve the mechanical properties of BT22 titanium alloy plate used as sensor substrate, BT22 titanium alloy plate was first treated by solid solution treatment at 850 ℃+0.5 h and then strengthened by cold rolling, and the influences of cold rolling deformation amount on the microstructure and tensile properties of solid solution BT22 titanium alloy plate were studied by experimental testing method. The results show that the comprehensive use of high cold rolling deformation amount and low recrystallization temperature can help BT22 titanium alloy plate to form more fine-sized grains when the recrystallization occurs. After rolling, the strength of BT22 titanium alloy plate is greatly improved compared with that before rolling, and the strength is increased by at least 200 MPa. With the increasing of cold rolling deformation amount, the strength of alloy increases continuously, but the increase amplitude decreases. Although the elongation of alloy decreases after cold rolling, it still remains above 10%. In addition, the maximum yield strength of alloy after cold rolling is obtained when the cold rolling deformation amount is 80%, and the yield strength, tensile strength and elongation of alloy are 1012 MPa, 1042 MPa and 10%, respectively.

Funds:
国家自然科学基金专项基金项目(11347209)
AuthorIntro:
作者简介:张晓斌(1983-),男,硕士,讲师 E-mail:zhangxiaobin0365@126.com
Reference:

 [1]张纪春,马利霞,李晓华,等. 温度对TNW650高温钛合金双向超塑性锥杯成形的影响 [J]. 锻压技术,2020,45(4):195-201.


Zhang J C,Ma L X,Li X H,et al. Influence of temperature on biaxial superplastic cone-cup forming for high temperature titanium alloy TNW650 [J]. Forging & Stamping Technology,2020, 45(4): 195-201.

[2]陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用[J]. 钛工业进展, 2015, 32(6): 8-12. 

Chen J, Wang T X, Zhou W, et al. Titanium alloys for marine use at home and abroad and their applications [J]. Titanium Industry Progress, 2015, 32(6): 8-12. 

[3]赵永庆. 国内外钛合金研究的发展现状及趋势[J]. 中国材料进展, 2010, 29(5): 1-8. 

Zhao Y Q. Research status and trend of titanium alloys at home and alive [J]. Materials Progress in China, 2010, 29(5): 1-8. 

[4]麻西群, 于振涛, 牛金龙, 等. 新型生物医用钛合金的设计及应用进展[J]. 上海有色金属, 2018, 39(6): 26-31. 

Ma X Q, Yu Z T, Niu J L, et al. Design and application progress of novel biomedical titanium alloy [J]. Shanghai Nonferrous Metals, 2018, 39(6): 26-31. 

[5]邵威,邓沛然,仇健桐,等. Ti-6Al-4V高强钛合金的热拉深成形 [J]. 锻压技术,2020,45(5):56-60.

Shao W,Deng P R,Qiu J T,et al. Warm drawing on Ti-6Al-4V high strength titanium alloy [J]. Forging & Stamping Technology,2020,45(5): 56-60.

[6]张坤, 董洪波, 姜智勇, 等. 冷变形及时效工艺对TB8钛合金组织及性能影响的研究[J]. 稀有金属, 2019, 43(9): 904-910. 

Zhang K, Dong H B, Jiang Z Y, et al. Effect of cold deformation and aging process on microstructure and properties of TB8 Titanium alloy [J]. Chinese Journal of Rare Metals, 2019, 43(9): 904-910. 

[7]周晓虎,刘卫,郝芳,等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响 [J]. 锻压技术,2020, 45(6):29-35.

Zhou X H,Liu W,Hao F,et al. Influence of quasi-β forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forging & Stamping Technology,2020, 45(6):29-35.

[8]Nag S, Banerjee R, Srinivasan R, et al. ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Materialia, 2009, 57(7): 2136-2147. 

[9]Xu T W, Zhang S S, Zhang F S, et al. Effect of ω-assisted precipitation on βα transformation and tensile properties of Ti-15Mo-2.7Nb-3Al-0.2Si alloy[J]. Materials Science & Engineering, 2016, 654(27): 249-255. 

[10] 徐铁伟, 李金山, 张丰收, 等. TB8钛合金双级时效过程中的组织演变及时效响应(英文)[J]. 材料热处理学报, 2016, 37(2): 61-67. 

Xu T W, Li J S, Zhang F S, et al. Microstructure evolution and aging response of TB8 titanium alloy during double stage aging [J]. Journal of Materials and Heat Treatment, 2016, 37(2): 61-67. 

[11] 何丹, 王庆娟, 高颀, 等. 新型β钛合金时效析出相的演变及硬化[J]. 稀有金属, 2016, 40(7): 633-639. 

He D, Wang Q J, Gao Q, et al. Evolution and hardening of precipitates in new β-Ti alloy [J]. Chinese Journal of Rare Metals, 2016, 40(7): 633-639. 

[12] Cordero Z C, Knight B E, Schuh C A. Six decades of the Hall-Petch effect-A survey of grain-size strengthening studies on pure metals[J]. International Materials Reviews, 2016, 61(8): 495-512. 

[13] Song R K, Wei L J, Yang C X, et al. Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness[J]. Journal of Alloys and Compounds, 2018, 744: 552-560. 

[14] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. 

Liu Q M, Zhang Z H, Liu S F, et al. Application and development of Titanium alloy in aerospace and weapon equipment [J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com