Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Grain refinement process for power metallurgy superalloy FGH96 based on hot die forging
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG111.7;TG312
year,vol(issue):pagenumber:2021,46(10):19-24
Abstract:

 FGH96 is the second generation of power metallurgy superalloy in China, it is very difficult to forge and form by the conventional forging process. Therefore, in order to explore a reasonable preparation method for fine-grained disc billet, the hot die forging experiments were carried out at hot die temperature of 900 ℃ with different strain rates, deformation temperatures and deformation amounts to study the change rules of microstructure for power metallurgy superalloy (P/M superalloy)FGH96. The results show that when the forging temperature is lower than γ′ phase solid solution temperature,the microstructure becomes more uniform with the increasing of the deformation temperature, and when the deformation temperature exceeds the γ′ phase solution temperature, there is a tendency of grain growth. In addition, the grain sizes of alloy are refined with the increasing of the deformation amount, and the microstructure is not uniform when the deformation amount is low, but the better refined structure can be obtained when the deformation amount exceeds 30%. When forging with a large deformation amount greater than 30% at the deformation temperature range of 1050-1130 ℃, the grain sizes can be increased by more than three grades, and the recrystallization structure about grade 12 can be obtained by the large deformation upsetting and repeated upsetting and drawing, which significantly increases the tensile strength and presents the fracture characteristics of intergranular and transgranular mixed fracture.

Funds:
四川省应用基础研究项目( 2019YJ0519);四川省科技厅项目(18ZB0050)
AuthorIntro:
岳太文(1982-),男,硕士,副教授 E-mail:yuetaiwen@qq.com
Reference:

 [1]张敏聪, 东赟鹏,刘趁意. FGH96合金热挤压棒材超塑性研究[J]. 材料工程,2012,(7):24-28.


Zhang M C, Dong Y P, Liu C Y. Study on superplasticity of extruded FGH96 alloy[J]. Journal of Materials Engineering,2012, (7):24-28.

[2]宋晓俊, 方爽,东赟鹏,等. 应变速率对挤压态镍基粉末高温合金异常晶粒长大的影响[J]. 热加工工艺,2015,44(13): 42-45.

Song X J, Fang S, Dong Y P, et al. Effect of strain rate on abnormal grain growth of extruded ni-based power metallurgy superalloy[J]. Hot Working Technology,2015,44(13): 42-45.

[3]郭灵, 王淑云,林海.先进航空材料及构件锻压成形技术[M].北京:国防工业出版社, 2011.

Guo L, Wang S Y, Lin H. Forging Techniques of Advanced Aeronautical Materials and Components[M]. Beijing: National Defense Industry Press, 2011.

[4]王超渊, 东赟鹏,宋晓俊,等. 变形温度及变形量对挤压态FGH96合金晶粒异常长大的影响[J].航空材料学报,2016,36(5):14-20.

Wang C Y,Dong Y P,Song X J,et al. Effect of deforming temperature and strain on abnormal grain growth of extruded FGH96 superalloy[J]. Journal of Aeronautical Materials,2016,36(5):14-20.

[5]刘帅, 张雪,于海鑫,等. FGH96激光熔化沉积成形过程对组织与性能的影响[J]. 航空制造技术,2019,62(Z1):72-79.

Liu S, Zhang X, Yu H X, et al. Effect of laser melting deposition process on microstructure and property for FGH96[J]. Aeronautical Manufacturing Technology,2019, 62(Z1):72-79.

[6]宁永权, 姚泽坤. FGH4096粉末高温合金的再结晶形核机制[J].金属学报, 2018,48(8):1005-1010.

Ning Y Q, Yao Z K. Recrystallization nucleation mechanism of FGH4096 powder metallurgy superalloy[J]. Acta Metallurgica Sinica, 2018,48(8):1005-1010.

[7]陈龙, 司家勇,刘松浩,等. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报,2019,33(12):2047-2054.

Chen L, Si J J,Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy[J]. Materials Reports, 2019, 33(12):2047-2054.

[8]李青, 韩雅芳,肖程波, 等. 等温锻造用模具材料的国内外研究发展状况[J]. 材料导报,2004,18(4):9-16.

Li Q, Han Y F, Xiao C B, et al. R & D status of die materials for iso-thermal forging at high temperature[J]. Materials Reports, 2004,18(4):9-16.

[9]马文斌, 吴凯,刘国权,等. PREP FGH4096粉末凝固组织和碳化物研究[J].钢铁研究学报, 2011,23(S2):490-493.

Ma W B, Wu K,Liu G Q, et al. Effect of cooling rete on microstructure of PREP FGH4096 powders[J]. Journal of Iron and Steel Research, 2011, 23(S2):490-493.

[10]傅豪, 王梦雅,纪箴,等. 热变形对FGH96高温合金原始颗粒边界的影响[J]. 粉末冶金技术,2018,36(3):201-205.

Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy[J]. Powder Metallurgy Technology, 2018, 36(3):201-205.

[11]付锐, 李福林,尹法杰. 多向整体锻造在变形FGH96合金涡轮盘制备中的应用[J]. 稀有金属, 2017, 41(2):113-119.

Fu R, Li F L, Yin F J. Application of multiple integral forging in preparation of wrought superalloy FGH96 turbine disk[J]. Chinese Journal of Rare Metals, 2017, 41(2): 113-119.

[12]黄明星, 汪大成,罗希.GH4169合金小余量小尺寸静子叶片锻造工艺及显微组织控制[J].锻压技术,2020,45(1):41-46.

Huang M X, Wang D C, Luo X. Forging process and microstructure control for alloy GH4169 stator blade with little allowance and small size[J].Forging & Stamping Technology,2020,45(1):41-46.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com