Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction model on forming limit for ultrathin superalloy strip
Authors: Wan Min Kong Rong Zheng Lihuang Yan Binyu Meng Bao 
Unit:  
KeyWords:  
ClassificationCode:TG381
year,vol(issue):pagenumber:2021,46(9):90-98
Abstract:

 In order to evaluate the prediction ability of different theoretical models to the forming limit of ultrathin superalloy strips, the forming limit curves of ultrathin superalloy strips were obtained by bulging experiments. Then, the forming limits of two kinds of ultrathin superalloy strips were theoretically predicted by Swift-Hill instability criterion, multiple ductile fracture criteria and M-K model, and the results were compared with the experimental results. The results show that the prediction accuracies of Swift-Hill instability criterion and traditional ductile fracture criterion are poor, which are not suitable for the prediction of forming limit of ultrathin superalloy strip. By considering the influence of surface coarsening on forming limit, the Swift-Hill model was modified, and the prediction result of the modified model was compared with the prediction results of Lou-huh 2012 criterion, Hu-Chen 2017 criterion and M-K model. It is found that the former three models have basically the same prediction accuracy for forming limit of ultrathin superalloy strip, and all of them are less than 10%, while the prediction accuracy of M-K model is lower, which provide an effective method for establishing the forming limit curve of ultrathin superalloy strip and have important engineering application value.

 

Funds:
国家自然科学基金资助项目(51975031);中国航发集团创新基金项目(ZZCX-2018-047)
AuthorIntro:
万敏(1962-),男,博士,教授 E-mail:mwan@buaa.edu.cn 通信作者:孟宝(1985-),男,博士,副教授 E-mail:mengbao@buaa.edu.cn
Reference:

 [1]高林林, 苏明. 钛镍特种金属板带材的应用及技术发展[J]. 重型机械, 2007, (6): 1-5.


 


Gao L L, Su M. Application & development trend of TiNi alloy sheet strip [J]. Heavy Machinery, 2007, (6): 1-5.


 


[2]朱宇, 万敏.航空发动机薄壁W形封严环动模外压成形[J].航空学报,2015,36(7):2457-2467.


 


Zhu Y, Wan M. External pressure forming of thin walled Wshaped sealing rings in aircraft engines using movable dies [J]. Acta Aeronautica et Astronautica Sinica, 2015,36 (7): 2457-2467.


 


[3]邹正平, 刘火星,唐海龙,等.高超声速航空发动机强预冷技术研究[J].航空学报,2015,36(8):2544-2562.


 


Zou Z P, Liu H X, Tang H L, et al. Precooling technology study of hypersonic aeroengine [J]. Acta Aeronautica et Astronautica Sinica, 2015,36 (8): 2544-2562.


 


[4]吴杰锋, 陈炜,张玲,.不锈钢超薄板的力学性能及成形极限研究[J].热加工工艺,2016,45(1):127-130.


 


Wu J F, Chen W, Zhang L, et al. Study on mechanical property and forming limit of 304 stainless steel [J]. Hot Working Technology, 2016,45 (1): 127-130.


 


[5]Keeler S P. Determination of forming limits in automotive stampings[J]. SAE Transactions, 1966, 74: 1-9.


 


[6]Goodwin G M. Application of strain analysis on sheet metal forming problems in the press shop[J]. SAE Transactions, 1968, 77: 380-387.


 


[7]Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets[J]. Tawata Tech Rep, 1968, 264: 8517-8530.


 


[8]Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Sciences, 1967, 9(9): 609-620.


 


[9]Swift H W. Plastic instability under plane stress[J]. Pergamon,1952,1(1):1-18.


 


[10]Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. Pergamon,1952,1(1):19-30.


 


[11]Marciniak Z, Kuczyński K. Limit strains in the processes of stretchforming sheet metal[J]. International Journal of Mechanical Sciences, 1967, 9(9): 609-620.


[12]Ozturk F, Lee D. Analysis of forming limits using ductile fracture criteria[J]. Journal of Materials Processing Technology, 2004, 147(3): 397-404.


 


[13]傅垒, 李利,刘成,等. 基于MK理论的5182铝合金汽车板成形极限预测[J]. 轻合金加工技术, 2020, 48(7): 58-62.


 


Fu L, Li L, Liu C, et al. Prediction of forming limit of 5182 aluminum alloy sheet for automobile based on MK theory[J]. Light Alloy Fabrication Technology, 2020, 48 (7): 58-62.


 


[14]余心宏, 翟妮芝,翟江波. 基于Oyane韧性断裂准则的板料成形极限预测[J]. 材料科学与工艺, 2009, 17(5): 738-740.


 


Yu X H, Zhai N Z, Zhai J B. Prediction of the forming limit of sheet metals based on Oyane ductile fracture criterion [J]. Materials Science and Technology, 2009, 17 (5): 738-740.


 


[15]董国疆, 陈志伟,赵长财,等. 基于神经网络和遗传算法的板材韧性断裂准则参数优化及成形极限预测[J]. 中国有色金属学报, 2021, 31(2): 419-432.


 


Dong G J, Chen Z W, Zhao C Cet al. Parameter optimization of ductile fracture criterion based on neural network and genetic algorithm and forming limit prediction for sheet metal[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (2): 419-432.


 


 


[16]卢立伟,盛坤,伍贤鹏,等. 镁合金挤压变形工艺的研究进展 [J]. 锻压技术,2019,44(1):1-9.


 


X Lu L WSheng KWu X Pet al. Research progress of extrusion process for magnesium alloy [J]. Forging & Stamping Technology2019, 44(1):1-9.


 


[17]Meng B, Shi J J, Zhang Y Y, et al. Feasibility evaluation of failure models for predicting forming limit of metal foils[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2461-2471.


 


[18]肖纳敏, 雷宇,罗俊杰,.航空用GH625镍基高温合金带材的成形极限研究[J].精密成形工程,2021,13(1):51-60.


 


Xiao N M, Lei Y, Luo J Jet al. Formability of GH625 nickelbased superalloy strip for aviation [J]. Journal of Netshape Forming Engineering, 2021,13 (1): 51-60.


 


[19]Meng B, Fu M W, Fu C M, et al. Ductile fracture and deformation behavior in progressive microforming[J] Materials & Design, 2015, 83: 14-25.


 


[20]Cheng C, Wan M, Meng B, et al. Characterization of the microscale forming limit for metal foils considering free surface roughening and failure mechanism transformation[J]. Journal of Materials Processing Technology, 2019, 272: 111-124.


 


[21]GB/T 228.1—2010, 金属材料 拉伸试验 第1部分:室温试验方法 [S].


 


GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].


 


 


[22]GB/T 5027—2016, 金属材料薄板和薄带塑性应变比(r)的测定[S].


 


GB/T 5027—2016, Metallic materials—Sheet and strip—Determination of plastic strain ratio[S].


 


[23]GB/T 5028—2008, 金属材料薄板和薄带拉伸应变硬化指数(n)的测定[S].


 


GB/T 5028—2008, Metallic materials—Sheet and strip—Determination of tensile strain hardening exponent[S].

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com