Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Accurate characterization on inelastic recovery for deformation magnesium alloy
Authors: Yang Chong1  2 Zhao Hui1  2 Zhu Guoguo1  2 Peng Yan1  2 Shi Baodong1  2 
Unit:  
KeyWords:  
ClassificationCode:TG386
year,vol(issue):pagenumber:2021,46(9):85-89
Abstract:

 Compared with FCC and BCC metals, a large inelastic recovery strain is produced after unloading for magnesium alloy with HCP structure, which is the key factor restricting the springback prediction accuracy of magnesium alloy sheet. The results show that both Chord modulus and Yoshida2020 models are invalid to predict the inelastic recovery strain of AZ31 deformation magnesium alloy sheet after unloading. In order to accurately predict the inelastic recovery of magnesium alloy, a stress dependent variable elastic modulus model was proposed by introducing a stress factor and exponential function, that is SDE (Stress Dependent Exponential) model. Compared with the experimental results, the model accurately calculated the unloading mechanical response of wrought magnesium alloy, and the inelastic recovery after unloading made the residual strain less than the residual strain after linear elastic unloading. Then, the residual strain after uniaxial tensile unloading with constant modulus and stress dependent variable elastic modulus was simulated by finite element software. The results show that the maximum residual strain value after unloading with constant modulus is 1.08%, and the maximum residual strain value after unloading with variable modulus is 0.94%.

 

Funds:
国家自然科学基金资助项目(51771166);河北省杰出青年基金资助项目(E2019203452);河北省高层次人才资助项目(A202002002);华中科技大学材料成形与模具技术国家重点实验室(P2020-013);河北省研究生创新资助项目(CXZZBS2020053)
AuthorIntro:
杨冲(1993-),男,博士研究生 E-mail:1750796646@qq.com 通信作者:石宝东(1982-),男,博士,教授 E-mail: baodong.shi@ysu.edu.cn
Reference:

 [1]Cleveland R M, Ghosh A K. Inelastic effects on springback in metals[J]. International Journal of Plasticity, 2002, 18(5-6): 769-785.


 


[2]范利锋, 梁培,王葛,等. 变弹性模量对预弯曲回弹计算的影响[J]. 塑性工程学报,202027(3)95-101.


 


Fan L F, Liang P, Wang G, et al. Effects of variable elastic modulus on springback calculation of crimping[J]. Journal of Plasticity Engineering, 2020, 27(3): 95-101.


 


[3]徐虹, 刘亚楠,于婷,等. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报:工学版,2017,471191-198.


 


Xu H, Liu Y N, Yu T, et al. Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loadingunloading[J]. Journal of Jilin UniversityEngineering and Technology Edition, 2017, 47(1): 191-198.


 


[4]Wagoner R H, Lim H, Lee M G. Advanced issues in springback[J]. International Journal of Plasticity, 2013, 45(45): 3-20.


 


[5]Min J Y, Lin J P. Anelastic behavior and phenomenological modeling of Mg ZEK100O alloy sheet under cyclic tensile loadingunloading[J]. Materials Science & Engineering A, 2013, 561, 174-182.


 


[6]余海燕, 陈思吉,何泽珍. 镁合金板的非弹性回复行为研究[J]. 塑性工程学报,2017244):1-5.


 


Yu H Y, Chen S J, He Z Z. Study in inelastic recovery behavior of magnesium alloy sheet[J]. Journal of Plasticity Engineering, 2017, 24(4): 1-5.


 


[7]Hama T, Takuda H. Crystalplasticity finiteelement analysis of inelastic behavior during unloading in a magnesium alloy sheet[J]. International Journal of Plasticity, 2011, 27(7): 1072-1092.


 


[8]Hama T, Kitamura N, Takuda H. Effect of twinning and detwinning on inelastic behavior during unloading in a magnesium alloy sheet[J]. Materials Science & Engineering A, 2013, 583232-241.


 


[9]Wang H, Lee S Y, Wang H, et al. On plastic anisotropy and deformation historydriven anelasticity of an extruded magnesium alloy[J]. Scripta Materialia, 2019, 176: 36-41.


 


[10]Yoshida F, Uemori T, Fujiwara K. Elasticplastic behavior of steel sheets under inplane cyclic tensioncompression at large strain[J].International Journal of Plasticity, 2002, 18(5-6): 633-659.


 


[11]Yoshida F, Amaishi T. Model for description of nonlinear unloadingreloading stressstrain response with special reference to plasticstrain dependent chord modulus[J]. International Journal of Plasticity, 2020, 130: 102708.


 


[12]Sun L, Wagoner R H. Complex unloading behavior: Nature of the deformation and its consistent constitutive representation[J]. International Journal of Plasticity2011, 27(7):1126-1144.


 


[13]温媛媛, 林建平,庞政,等. Q&P钢板滞弹性变形行为研究[J]. 塑性工程学报,201623(6)131-136.


 


Wen Y Y, Lin J P, Pang Z, et al. Anelastic behavior of Q&P steel[J]. Journal of Plasticity Engineering, 2016, 23(6): 131-136.


 


[14]郑淇文, 朱春东,郭宇航,等. Strenx960先进高强钢折弯回弹控制 [J]. 锻压技术,2020,45(11):25-29.


 


Zheng Q W, Zhu C D, Guo Y H, et al. Bending springback control of advanced highstrength steel Strenx960 [J]. Forging & Stamping Technology2020,45(11):25-29.


 


[15]余海燕, 高云凯. 高强度钢板非弹性回复行为实验研究[J]. 中国机械工程,2010,21(3)351-354.


 


Yu H Y, Gao Y K. Experimental investigation on the inelastic recovery behavior of high strength sheet steels[J]. China Mechanical Engineering, 2010, 21(3): 351-354.


 


[16]聂昕, 杨昕宇,牛星辉,等. 基于不同U形弯曲冲压工艺的高强度钢板回弹实验研究 [J]. 锻压技术,2019,44(12):1-10.


 


Nie X, Yang X Y, Niu X H, et al. Experimental study on springback of high strength steel sheet based on stamping processes under different Ushaped bending [J]. Forging & Stamping Technology2019,44(12):1-10.


 


[17]张华平, 李亚,连昌伟. DP980高强钢U形弯曲试验与数值模拟[J]. 锻压技术,202045(4)70-75.


 


Zhang H P, Li Y, Lian C W. Test and numerical simulation of Ushape bending part for DP980 high strength steel[J]. Forging & Stamping Technology, 2020, 45(4): 70-75.


 


[18]范利锋, 梁培,马静,等. X80高强度管线钢非线弹性行为研究[J]. 塑性工程学报,2020,27(1)110-116.


 


Fan L F, Liang P, Ma J, et al. Study on nonlinear elasticity behavior of X80 highstrength pipeline steel[J]. Journal of Plasticity Engineering, 2020, 27(1): 110-116.


 


[19]Min J, Lin J. Anelastic behavior and phenomenological modeling of Mg ZEK100O alloy sheet under cyclic tensile loadingunloading[J]. Materials Science & Engineering A, 2013, (561): 174-182.


 


[20]Liempt P V, Sietsma J. A physically based yield criterion I: Determination of the yield stress based on analysis of preyield dislocation behaviour[J]. Materials Science & Engineering A2016, 662: 80-87.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com