Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Bulging process for GH4169 alloy low-pressure turbine casing profile ring forgings
Authors: Luo Hongfei  Lu Yi  Wu Yong′an  Guo Lianggang  Wang Huadong  Yang Jiadian 
Unit: Guizhou Aviation Technical Development Co.  Ltd.   Northwestern Polytechnical University 
KeyWords: GH4169 alloy  low-pressure turbine casing  bulging process  dimensional accuracy  mechanical properties 
ClassificationCode:TG335.21
year,vol(issue):pagenumber:2021,46(7):27-33
Abstract:
In order to solve the problems of low accuracy, big allowance, low material utilization rate and long period for manufacturing in the rolling process of low-pressure turbine casing profile ring forgings, the bulging process of GH4169 alloy low-pressure turbine casing profile ring forgings was studied by the method of combining numerical simulation and process trial production. The simulation study clarified the influence laws of the bulging deformation amount on the stress, strain, temperature distributions and uniformities of low-pressure turbine casing profile ring forgings. Then, through comprehensive consideration, the bulging deformation amount was suggested to be 1.5%, which was more reasonable. The trial production research of the bulging process shows that the GH4169 alloy low-pressure turbine casing profile ring forgings are reshaped by the bulging process, which significantly reduces the ellipticity of forgings, improves the dimensional accuracy of forgings, reduces the forgings allowance, increases the uniformity of allowance, improves the material utilization rate of forgings, and at the same time effectively improves the mechanical properties and the uniformity of forgings. Finally, the improvement of the uniformity of the forgings allowance can effectively reduce the mechanical deformation of the low-pressure turbine casing parts.
Funds:
国家自然科学基金资助项目(51875468, 51575448)
AuthorIntro:
作者简介:罗鸿飞(1987-),男,学士,工程师,E-mail:luohongfei@gzhykj.net;通信作者:吴永安(1970-),男,学士,研高,E-mail:wya@gzhykj.net
Reference:
[1]安丽莎,韩永武,邓连兴.航空发动机机匣加工变形分析与控制[J]. 中国新技术新产品, 2018, (4): 10-11.
An L S, Han Y W, Deng L X. Analysis and control of machining deformation of aeroengine casing[J]. China New Technologies and New Products, 2018, (4): 10-11.
[2]刘建南. 航空发动机机匣类零件的变形控制研究[J]. 中国新技术新产品, 2017, (12):46-47.
Liu J N. Research on deformation control of aeroengine casing parts [J]. China New Technologies and New Products, 2017, (12): 46-47.
[3]马英,孙长友,李丹.大型薄壁低涡机匣变形控制研究[J]. 科技创新与应用, 2015, (32):105.
Ma Y, Sun C Y, Li D. Research on deformation control of large thin walled low-pressure turbine casing [J]. Technology Innovation and Application, 2015, (32):105.
[4]中国金属学会高温材料分会.中国高温合金手册:上卷[M]. 北京:中国标准出版社,2012.
Academic Communittee of the Superalloy, CSM. China Superalloys Handbook: Volume 1 [M]. Beijing: China Standard Press, 2012.
[5]杜金辉,吕旭东,邓群,等. GH4169合金研制进展[J]. 中国材料进展, 2012, 31(12):12-20.
Du J H, Lyu X D, Deng Q, et al. Progress in GH4169 alloy development [J]. Materials China, 2012, 31(12):12-20.
[6]庄景云,杜金辉,邓群,等.变形高温合金GH4169[M]. 北京:冶金工业出版社, 2006.
Zhuang J Y, Du J H, Deng Q, et al. Deformation High Temperature Alloy GH4169[M]. Beijing: Metallurgical Industry Press, 2006.
[7]罗鸿飞,刘有云,宋捷,等.GH4169合金超大异形环件制造工艺研究[J].航空制造技术,2014,(7):49-52.
Luo H F, Liu Y Y, Song J, et al. Manufacturing technology for large contour ring of GH4169 alloy [J]. Aviation Manufacturing Technology, 2014, (7):49-52.
[8]罗鸿飞,王华东,杨家典,等. 航空发动机机匣类GH4169合金异形环件锻造工艺研究[A]. 仲增墉. 第十三届中国高温合金年会论文集[C]. 北京:冶金工业出版社, 2016.
Luo H F, Wang H D, Yang J D, et al. Forging technology research on contoured-ring forging made of GH4169 alloy for aero-engine case[A]. Zhong Z Y. Proceedings of the 13th China Annual Conference on Superalloy[C]. Beijing: Metallurgical Industry Press, 2016.
[9]曹秀中,韩秀全,张涛,等.TC4钛合金筒形件分瓣热胀形工艺研究[J].航空制造技术,2014,(4):89-91.
Cao X Z, Han X Q, Zhang T, et al. Research on hot bulge forming process of TC4 titanium alloy cylindrical part [J]. Aviation Manufacturing Technology,2014,(4):89-91.
[10]吴泽刚,刘良宝,孙剑飞,等.航空发动机TC4机匣加工变形控制研究[J].航空制造技术,2017,(21):62-67.
Wu Z G, Liu L B, Sun J F, et al. Study on controlling machining distortion of aeroengine TC4 casing [J]. Aviation Manufacturing Technology,2017,(21):62-67.
[11]张志革,王敏丰.航空发动机机匣机械加工过程中变形因素分析及变形控制[J].中国设备工程,2020,(15):214-215.
Zhang Z G, Wang M F. Deformation factor analysis and deformation control of aero-engine casing during machining process[J].China Plant Engineering,2020,(15):214-215.
[12]宋明强,田俊强,何昱含.TC4航空发动机机匣加工变形控制策略[J].科技创新与应用,2019,(20):102-103.
Song M Q, Tian J Q, He Y H. Deformation control strategy of TC4 aeroengine casing machining[J]. Technology Innovation and Application, 2019,(20):102-103.
[13]任军学,杨俊,周金华,等.航空发动机机匣数控加工变形控制方法[J].航空制造技术,2014,(Z2):96-99.
Ren J X, Yang J, Zhou J H, et al. Method of controlling deformation of aeroenging casing in NC machining [J]. Aviation Manufacturing Technology, 2014,(Z2):96-99.
[14]AMS 5663M—2004, Nickel alloy, corrosion and heat-resistant, bars, forgings, and rings 52.5Ni-19Cr-3.0Mo-5.1Cb(Nb)-0.90Ti- 0.50Al-18Fe consumable electrode or vacuum induction melted 1775 (968 ℃)solution and precipitation heat treated[S].
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com