Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of friction coefficient on wall thickness distribution after hydroforming for aviation aluminum alloy tee pipe
Authors: Wang Ling  Zhang Jianmin  Sun Jin Zhang Peng Lang Lihui 
Unit: Shenyang Aircraft Industry (Group) Co.  Ltd. Tianjin Tianduan Aviation Technology Co.  Ltd. Beihang University 
KeyWords: friction coefficient aluminum alloy wall thickness tee pipe hydroforming 
ClassificationCode:TG394
year,vol(issue):pagenumber:2021,46(4):101-105
Abstract:

In the hydroforming process of aluminum alloy tee pipe, the friction coefficient is one of the key factors affecting its wall thickness distribution and branch pipe height. Therefore, by establishing the finite element model for hydroforming of tee pipe, under the fixed filling pressure and axial feeding parameters, the influence of friction coefficient on the wall thickness of tee pipe in the hydroforming process was simulated and analyzed by the finite element analysis method, and the influence law of friction coefficient on the forming wall thickness of tee pipe was obtained. The results show that when the friction coefficient is 0.075, the thinning rate of branch pipe is smaller, and the wall thickness distribution is better. At the same time, the friction coefficients corresponding to different lubricating media are obtained by the friction and wear testing machine. Finally, a lubricating media with the friction coefficient close to 0.075 is selected for actual bulging verification, and the aviation aluminum alloy tee pipe meeting the requirements of wall thickness and thinning is obtained to provide some theoretical guidance for tee pipe hydroforming.

Funds:
AuthorIntro:
王玲(1973-),女,学士,研究员 E-mail:w_ling2008@aliyun.com 通讯作者:张建民(1987-),男,硕士,高级工程师 E-mail:amoijianmin@163.com
Reference:


[1]董广军. 一种铝合金三通管件内高压成形工艺的研究
[J].经济技术协作信息,2019,(16):108-109.


Dong G J. Study on the process of internal high pressure forming parameters for an aluminum alloy tee tube
[J]. Economic and Technological Cooperation Information,2019,(16):108-109.



[2]翟江波,余心宏. 三通管复合胀形主要参数的正交试验分析
[J]. 电子工艺技术,2010,32(2):106-109.


Zhai J B, Yu X H.Orthogonal experimental analysis of principal parameters in tee tube compound bulging process
[J]. Electronics Process Technology,2010,32(2):106-109.



[3]梁海成,王忠堂,袁安营,等.内压力对内高压成形三通管影响的数值分析
[J].沈阳理工学报,2007,26(5):21-25.


Liang H C,Wang Z T,Yuan A Y,et al.Numerical analysis of the influence of internal pressure on the tri-branch tube with forming using interanl high pressure
[J]. Transactions of Shenyang Ligong University,2007,26(5):21-25.



[4]余心宏,翟江波,翟妮芝. 三通管复合胀形加载路径研究
[J]. 机床与液压,2007,35(12):71-73.


Yu X H,Zhai J B,Zhai N Z. Research on loading path applied in T-tube compound bulging
[J]. Machine Tool & Hydraulics,2007,35(12):71-73.



[5]程东明,滕步刚,郭斌,等. Y型三通管内高压成形壁厚分布规律
[J]. 材料科学与工艺,2007,15(6):750-753.


Cheng D M,Teng B G,Guo B,et al.Thickness distribution of hydroforming Y-shape branch
[J]. Materials Science and Technolog,2007,15(6):750-753.



[6]苑世剑. 现代液压成形技术
[M]. 北京: 国防工业出版社, 2009.


Yuan S J. Modern Hydroforming Technology
[M].Beijing:National Defense Industry Press,2009.



[7]赵长财,周磊,张庆.薄壁管液压胀形加载路径研究
[J].中国机械工程,2003,(13):1087-1089.


Zhao C C,Zhou L,Zhang Q. Research on loading route of thin tube bulge forming
[J]. China Mechanical Engineering,2003,(13):1087-1089.



[8]邱建新,张士宏.矩形截面直角弯管内高压成形过程的数值模拟
[J].机械工程与自动化,2004,(5):1-3.


Qiu J X,Zhang S H. Numerical simulation of internal high pressure forming of the right-angle bent-tube with rectangular section
[J].Mechanical Engineering & Automation,2004,(5):1-3.



[9]田仲可,马泽恩.基于DASYLab的管材轴压胀形的加载控制
[J].机械科学与技术,2002,(3):437-438.


Tian Z K,Ma Z E. DASYLab-based tube hydroforming loading control
[J]. Mechanical Science and Technology,2002,(3):437-438.



[10]李洪洋,苑世剑,王小松,等.内高压成形工艺的应力应变及工艺失稳分析
[J].哈尔滨工业大学学报,2006,38(9):1515-1517.


Li H Y,Yuan S J,Wang X S,et al. Stress and strain state of tube hydroforming and it′s influence on destabilization
[J]. Journal of Harbin Institute of Technology,2006,38(9):1515-1517.



[11]王会凤,韩静涛,刘博纶.双金属复合三通管液压胀形技术数值模拟
[J].中国科技论文,2014, (2):137-139,144.


Wang H F,Han J T,Liu B L. Numerical simulation study on bimetal T-tube hydraulic bulging technology
[J].Sciencepaper Online,2014, (2):137-139,144.



[12]佘威,何成,张稳定,等.AA5B02铝合金三通管充液成形工艺研究及参数优化
[J].精密成形工程, 2016, 8(5):88-89.


She W,He C,Zhang W D,et al. Optimization of hydraulic forming process for three-way tube based on finite element simulation
[J]. Journal of Netshape Forming Engineering, 2016, 8(5):88-89.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com