Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Axial low pressure forming process for aluminum alloy Ω-shaped bellows
Authors: Wang Biao Sun Lei Lin Caiyuan Chu Guannan Li Jiguang Hu Deyou 
Unit: Harbin Institute of Technology(Weihai) Harbin Institute of Technology-Weihai Innovation Park Co. Ltd. Tianjin Aerospace Long March Rocket Manufacturing Co. Ltd. 
KeyWords: bellows  axial low pressure forming  aluminum alloy  loading path internal pressure  axial feeding 
ClassificationCode:TG39
year,vol(issue):pagenumber:2021,46(4):56-62
Abstract:

In order to obtain the aluminum alloy Ω-shaped bellows with large diameter, large expansion rate and small wall thickness thinning value, an axial low pressure forming process was proposed, and the core idea was to improve the forming quality of bellows by reasonably matching the relationship between internal pressure and axial feeding. At the same time, the finite element model of bellows in axial low pressure forming process was established by the combination of experiment and numerical simulation analysis and based on the finite element analysis software ABAQUS. And based on the equivalent stress and the wall thickness distribution in axial low pressure forming process of bellows, the influences of three different loading paths on the forming process of bellows were analyzed to obtain the optimal marching relationship between internal pressure and axial feeding. The results show that the shape accuracy of bellows obtained by the stepped matching relationship of path 3 is high, and the maximum thinning rate is 12.1%, which verifies the feasibility of process

Funds:
国家基金委航天联合基金重点项目(U1937205);国家自然科学基金面上项目(51475121);山东省重大科技创新工程(2019TSLH0103)
AuthorIntro:
王彪(1997-),男,硕士研究生 E-mail:zhinan_w@163.com 通讯作者:初冠南(1979- ),男,博士,教授 E-mail:chuguannan@hit.edu.cn
Reference:


[1]马伟, 李德雨, 钟玉平, 等. 波纹管的发展与应用
[J]. 河南科技大学学报:自然科学版, 2004, 25(4): 28-30.


Ma W,Li D Y,Zhong Y P,et al. Development and application of bellows
[J]. Journal of Henan University of Science & Technology:Natural Science, 2004, 25(4): 28-30.



[2]杨玲. 膨胀节波纹管优化设计研究
[D]. 重庆:西南农业大学, 2003.


Yang L. Optimization Design Research on Expansion Joint Bellows
[D]. Chongqing: Southwest University, 2003.



[3]肖巧. 柔性环形金属波纹管旋压-滚压联合精密成型技术研究
[D]. 秦皇岛:燕山大学, 2019.


Xiao Q. Study on Combined Spinning-rolling Precision Molding Technology for Flexible Annular Metal Bellows
[D]. Qinhuangdao: Yanshan University, 2019.



[4]Lin C, Chu G, Sun L, et al. Radial hydro-forging bending: A novel method to reduce the springback of AHSS tubular component
[J]. International Journal of Machine Tools and Manufacture, 2021, 160: 1-20.



[5]Abrantes J P, Szabo-Ponce A, Batalha G F. Experimental and numerical simulation of tube hydroforming (THF)
[J]. Journal of Materials Processing Technology, 2005, 164: 1140-1147.



[6]Yuan S, Yuan W, Wang X. Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming
[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 668-671.



[7]陈杰. 管材内高压成形数值模拟与工艺研究
[D]. 上海:上海交通大学, 2013.


  Chen J. Numerical Simulation and Optimization of Tube Hydroforming
[D]. Shanghai: Shanghai Jiao Tong University, 2013.



[8]Liu J, Lyu Z, Liu Y, et al. Deformation behaviors of four-layered U-shaped metallic bellows in hydroforming
[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3479-3494.



[9]Wang G, Zhang K F, Wu D Z, et al. Superplastic forming of bellows expansion joints made of titanium alloys
[J]. Journal of Materials Processing Technology, 2006, 178(1-3): 24-28.



[10]Jiang L, He Y, Lin Y, et al. Influence of process parameters on thinning ratio and fittability of bellows hydroforming
[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1): 3371-3387.



[11]Ko M, Altan T. Prediction of forming limits and parameters in the tube hydroforming process
[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1): 123-138.



[12]Fann K J, Hsiao P Y. Optimization of loading conditions for tube hydroforming
[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 520-524.



[13]Faraji G, Mashhadi M M, Norouzifard V. Evaluation of effective parameters in metal bellowsforming process
[J]. Journal of Materials Processing Technology, 2009, 209(7): 3431-3437.



[14]Jirathearanat S, Hartl C, Altan T. Hydroforming of Y-shapes-product and process design using FEA simulation and experiments
[J]. Journal of Materials Processing Technology, 2004, 146(1):124-129.



[15]唐治东. 波纹管液压成形过程的数值模拟与实验研究
[D]. 杭州:浙江工业大学, 2015.


Tang Z D. Numerical Simulation and Experimental Study of Bellows Hydroforming
[D]. Hangzhou: Zhejiang University of Technology, 2015.



[16]杨兵, 张卫刚, 林忠钦, 等. 管件液压成形动力显式有限元仿真的虚拟加载时间分析
[J]. 中国机械工程, 2007, 18(8): 904-906.


Yang B, Zhang W G, Lin Z Q, et al. Study on the virtual loading time in simulation of tube hydroforming with dynamic explicit FEM
[J]. China Mechanical Engineering, 2007, 18(8): 904-906.



[17]Xu Y, Ma Y, Zhang S H, et al. Numerical and experimental study on large deformation of thin-walled tube through hydrofoging process
[J]. International Journal of Advanced Manufacturing Technology, 2016, 87: 1885-1890.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com