Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Analysis on warping deformation for Ti/Al laminated composite plate in transverse co-extrusion
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG379
year,vol(issue):pagenumber:2021,46(3):56-63
Abstract:

  For the warping deformation problem of Ti/Al laminated composite plate in transverse co-extrusion process, the plastic deformation analysis and the process parameters optimization were numerically analyzed by software Deform-3D, and the warping angle of deformable aluminum material and the standard deviation of interface welding stress were proposed as the evaluation strategy of warping deformation. The simulation results show that the warping angle has the positive and negative correlation evolvement rules with extrusion speed and temperature respectively, that is, the “high temperature and low speed” co-extrusion preparation process helps to reduce the warping deformation behavior of Ti/Al laminated composite plate. At the same time, the smaller the warping angle is, the smaller the standard deviation of interface welding stress is for Ti/Al laminated composite plate in welding zone. Furthermore, the physical experiment of transverse co-extrusion of Ti/Al laminated composite plate was conducted by a relatively optimized set of process parameters (the extrusion temperature is 480 ℃, the extrusion speed is 1 mm·s-1), and the results show that the experimental warping degree is in a good agreement with the numerical simulation results to verify the validity of the numerical simulation results.

Funds:
国家自然科学基金资助项目(51705080);福建省自然科学基金面上项目(2018J01764)
AuthorIntro:
孙凯(1993-),男,硕士研究生 E-mail:N180220058@fzu.edu.cn 通讯作者:薛新(1983-),男,博士,副教授 E-mail: xin@fzu.edu.cn
Reference:

 [1]Zhang C Q, Robson J D, Prangnell P B. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4[J]. Journal of Materials Processing Technology, 2016, 231: 382-388.


 


[2]Vaidya W V, Horstmann M, Ventzke V, et al. Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications[J]. Journal of Materials Science, 2010, 45(22): 6242-6254.


 


[3]Fronczek D M, Chulist R, Litynskadobrzynska L, et al. Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints[J]. Journal of Materials Engineering & Performance, 2016, 25(8): 3211-3217.


 


[4]Fronczek D M, Chulist R, Litynskadobrzynska L, et al. Microstructural and phase composition differences across the interfaces in Al/Ti/Al explosively welded clads[J]. Metallurgical & Materials Transactions A, 2017, 48: 1-12.


 


[5]Zhao H, Yu M, Jiang Z, et al. Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding[J]. Journal of Alloys and Compounds, 2019, 789: 139-149.


 


[6]宗影影. 钛合金置氢增塑机理及其高温变形规律研究[D]. 哈尔滨:哈尔滨工业大学,2007.


 


Zong Y Y. Study on the Hydrogen Enhanced Plasticity Mechanism and Deformation Behaviors of Titanium Alloys at High Temperatures[D]. HarbinHarbin Institute of Technology, 2007.


 


[7]Chulist R, Fronczek D M, Szulc Z, et al. Texture transformations near the bonding zones of the threelayer Al/Ti/Al explosively welded clads[J]. Materials Characterization, 2017, 129: 242-246.


 


[8]Yu M, Zhao H, Jiang Z, et al. Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds[J]. Journal of Materials Processing Technology, 2019, 270: 274-284.


 


[9]Yu H, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding[J]. Journal of Materials Research, 2017, 32(19): 3761-3768.


 


[10]Ma M, Huo P, Liu W C, et al. Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Materials Science and Engineering: A, 2015, 636: 301-310.


[11]Ng H P, Przybilla T, Schmidt C, et al. Asymmetric accumulative roll bonding of aluminium-titanium composite sheets[J]. Materials Science & Engineering A, 2013, 576(1): 306-315.


 


[12]Kim T B, Tane M, Suzuki S, et al. Pore morphology of porous AlTi alloy fabricated by continuous casting in hydrogen atmosphere[J]. Materials Transactions, 2010, 51(10): 1871-1877.


 


[13]Park K, Kim D, Kim K, et al. Behavior of intermetallic compounds of AlTi composite manufactured by spark plasma sintering [J]. Materials, 2019, 12(2): 1-14.


 


[14]Zhong X, Feng J, Yao S. Temperature field modeling and experimental study on ultrasonic consolidation for AlTi foil[J]. Journal of Mechanical Science and Technology, 2019, 33(7): 1-8.


 


[15]Grittner N, Striewe B, Von hehl A, et al. Characterization of the interface of coextruded asymmetric aluminumtitanium composite profiles[J]. Materialwissenschaft and Werkstofftechnik, 2014, 45(12): 1054-1060.


 


[16]Dietrich D, Grittner N, Mehner T, et al. Microstructural evolution in the bonding zones of coextruded aluminium/titanium[J]. Journal of Materials Science, 2013, 49(6): 2442-2455.


 


[17]Wu D, Chen R S, Han E H. Bonding interface zone of MgGdY/MgZnGd laminated composite fabricated by equal channel angular extrusion[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S2): 613-618.


 


[18]孙伟领,丁金根,边翊,等. 铝合金控制臂锻造工艺参数优化与缺陷分析[J]. 锻压技术,201944(5)29-34.


 


Sun W L, Ding J G, Bian Y, et al. Optimization on forging process parameters and defect analysis for aluminum alloy control arm[J]. Forging & Stamping Technology, 2019, 44(5): 29-34.


 


[19]Bagshawa N, Punshona C. Prediction and control of distortion and residual stresses in electron beam welding[J]. Rare Metal Materials and Engineering, 2011, 40(4): 26-29.


 


[20]单云,吴斌. 一种适用于超高速冲压新型产品的冲裁模具结构[J]. 锻压技术,202045(3)119-124.


 


Shan Y, Wu B. New blanking die structure for ultra high speed stamping[J]. Forging & Stamping Technology, 2020, 45(3): 119-124.


 


[21]陈磊,王廷坤,王宗申,等. 气门成形过程数值模拟与挤压模具结构优化[J]. 锻压技术,202045(9)105-112.


 


Chen L, Wang T K, Wang Z S, et al. Numerical simulation on valve forming process and structure optimization on extrusion mold[J]. Forging & Stamping Technology, 2020, 45(9): 105-112.


 


[22]Liu Z, Li L, Li S, et al. Simulation analysis of porthole die extrusion process and die structure modifications for an aluminum profile with high length-width ratio and small cavity[J]. Materials, 2018, 11(9): 1-20.


 


[23]Pinter T, El Mehtedi M. Constitutive equations for hot extrusion of AA6005A, AA6063 and AA7020 alloys[J]. Key Engineering Materials, 2011, 491: 43-50.


 


[24]Van Haaften W M, Magnin B, Kool W H, et al. Constitutive behavior of ascast AA1050, AA3104, and AA5182[J]. Metallurgical and Materials Transactions A, 2002, 33(7): 1971-1980. 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com