Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:New extrusion process and mold design for large-scale magnesium alloy ring parts
Authors: Liu Jie  Zhao Xi  Guo Lafeng  Gao Ming  Liu Zhengran  Zhang Boxun 
Unit: North University of China Extrusion Technology Innovation Center for Complex Components of National Defense Science  Technology and Industry 
KeyWords: magnesium alloy  large-scale thin-walled ring parts  flip extrusion  curved busbar channel  principal stress method  deformation uniformity  orthogonal experiment 
ClassificationCode:TG376.2
year,vol(issue):pagenumber:2021,46(2):94-104
Abstract:
For the difficult in producing large-scale magnesium alloy thin-walled ring parts by traditional process, a new process of continuous flip extrusion for curved busbar channel was proposed. According to metal flow characteristics in forming process, the process scheme of multiple overturning forming was established to avoid the warping of billet, the mechanical analysis of the new process was conducted by principal stress method, and the forming process was numerically simulated by finite element software Deform. Furthermore, the forming force formula was verified, and the forming process and mold structure parameters were optimized by orthogonal experiment and based on the evaluation factor of deformation uniformity. The results show that considering the structural dimension of formed parts and the single deformation amount allowed by the new process, the billet needs to be flipped and extruded four times, and the expanding force formula and the maximum pressure formula with taper angle α of inner concave die as independent variable are derived. In addition, compared with the simulation results of FE Deform with α=20°,23° and 25°, the error is less than 10%. Finally, the extrusion process parameters are the extrusion speed of 1 mm·s-1 and the taper angle of inner concave die of 23°, and the die of the new extrusion process is designed to give a new way to realize the short process and low cost manufacturing of large-scale magnesium alloy thin-walled ring parts.
Funds:
国家科技重大专项项目(2019ZX04022001-004)
AuthorIntro:
刘杰(1993-),男,硕士研究生,E-mail:liujie06082020@163.com;通讯作者:赵熹(1983-),男,博士,副教授,E-mail:zhaoxi_1111@163.com
Reference:
[1]丁文江,付彭怀,彭立明,等. 先进镁合金材料及其在航空航天领域中的应用[J].航天器环境工程,2011,28(2):103-109.
Ding W J, Fu P H, Peng L M,et al. Advanced magnesium alloys and their applications in aerospace [J]. Spacecraft Environmental Engineering, 2011,28 (2): 103-109.
[2]滕步刚,苑世剑.特大环形件成形与制造技术[J].金属加工:热加工,2008. (23):42-44, 46.
Teng B G, Yuan S J. Manufacturing technology for ultra-large flange [J]. Metal Working, 2008, (23): 42-44. 46.
[3]Ma A, Jiang J, Saito N, et al. Improving both strength and ductility of a Mg alloy through a large umber of ECAP passes[J]. Materials Science and Engineering: A, 2009,513-514: 122-127.
[4]Huang X, Suzuki K, Watazu A, et al. Microstructure and texture of Mg-Al-Zn alloy processed by differential speed rolling[J]. Journal of Alloys and Compounds, 2008, 457(1): 408-412.
[5]Wang M, Yang H, Guo L G, et al. Effects and optimization of roll sizes in hot rolling of large rings of titanium alloy[J]. Rare Metal Materials and Engineering, 2009, 38(3):393-397.
[6]陈晓艳,郭宝峰,金淼,等.管筒形零件机械扩径工艺过程的成形参数优化[J].塑性工程学报,2006,13(6):24-28.
Chen X Y, Guo B F, Jin M, et al.Optimization of forming parameters in mechanical expanding process of tube-shaped parts [J].Journal of Plastic Engineering, 2006,13(6): 24-28.
[7]陈鹏.径轴向环件轧制成形过程数值模拟研究[D].南昌:南昌航空大学,2018.
Chen P. Numerical Simulation of Radial Axial Ring Rolling Process [D].Nanchang: Nanchang University of Aviation, 2018.
[8]Lirio Schaeffer,Alberto M G Brito. FEM numerical simulation and experimental investigation on end-forming of thin-walled tubes using a die [J]. Steel Research International,2007, 78(10-11): 798-803.
[9]Wan Z R,Dai K, Fang Y. The method of the principal shear stress tracing line and its applicatio in the flaring and expanding of a thin-walled tubewith a conical punch [J]. Journal of Materials Processing Technology,1997, 70(1-3): 220-227.
[10]Guo B F, Jin M, Nie S M, et al. Deformation characteristics of mechanical expanding thin-walled cylindrical parts[J]. Transactions of Nonferrous Metals Society of China, 2003,13(6):1342-1347.
[11]王峥,程万军,高文平,等.圆柱体闭式镦粗变形力的计算[J].模具工业,2013,39(7):57-60.
Wang Z, Chen W J, Gao W P, et al.Calculation of deformation force in closed upsetting of cylinder [J]. Mold Industry, 2013, 39 (7): 57-60.
[12]赵艳华,李庆华,李付国,等.环形件分级扩径成形及开裂研究[J].锻压装备与制造技术,2012,47(1):79-83.
Zhao Y H, Li Q H, Li F G, et al. Study on step expanding forming and cracking of ring parts [J]. Forging Equipment and Manufacturing Technology, 2012, 47 (1): 79-83.
[13]Wang Z R. A consistent relationship between the stress and strain-components and its application for analyzing the plane-stress forming process[J].Journal of Materials Processing Technology, 1995, 55(1):1-4.
[14]蔡锦达,程曦,付翔,等.锥形模机械扩径力计算与主要影响因素分析[J].中国机械工程,2010,21(5):599-602.
Cai J D, Cheng X, Fu X, et al. Calculation of mechanical expanding force of conical die and analysis of main influencing factors [J]. China Mechanical Engineering, 2010, 21 (5): 599-602.
[15]黄克坚,苏章卓,甘遂谋,等.焊管机械扩径力的计算[J].焊管,2010,33(12):23-26.
Huang K J, Su Z Z, Gan S M, et al. Calculation of mechanical expanding force of welded pipe [J]. Welded Pipe, 2010, 33 (12): 23-26.
[16]杜喜代,杜海波.单头机械扩径机拉力分析[J].锻压装备与制造技术,2010,45(1):72-74.
Du X D, Du H B. Tension analysis of single-head mechanical expander [J]. Forging Equipment and Manufacturing Technology, 2010, 45 (1): 72-74.
[17]彭孝国. 工艺参数对径轴向环件轧制成形影响研究[D]. 成都:电子科技大学,2015.
Peng X G. Study on the Influence of Process Parameters on the Rolling Forming of Radial Axial Ring[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
[18]武海燕. AZ80镁合金管形件锥形凹模稳态旋转正挤压成形研究[D].太原:中北大学,2016.
Wu H Y. Study on Steady Rotational Forward Extrusion Forming of Tapered Concave Die for AZ80 Magnesium Alloy Tubes[D]. Taiyuan: North University of China, 2016.
[19]覃银江. ZK60镁合金均匀化与热变形行为研究[D].长沙:中南大学,2009.
Qin Y J. Homogenization and Hot Deformation Behavior of ZK60 Magnesium Alloy[D]. Changsha: Central South University, 2009.
[20]席海霞. ZK60镁合金挤压过程数值模拟研究[D].哈尔滨:哈尔滨理工大学,2009.
Xi H X. Numericon of Extrusion Process of ZK60 Magnesium Alloy [D]. Harbin:Harbin University of Technology, 2009.
[21]陈幼筠,陈忠家,王雪英,等.ZK60镁合金的热变形流变行为与本构方程[J].金属功能材料,2017,24(1):25-31.
Chen Y Y, Chen Z J, Wang X Y, et al. Hot deformation rheological behavior and constitutive equation of ZK60 magnesium alloy [J]. Metal Functional Materials, 2017, 24 (1): 25-31.
[22]赵洋,肖洋,戴鹏瞩,等. 圆管内翻边成形的数值模拟及参数优化 [J]. 锻压技术,2020,45(1):80-88.
Zhao Y,Xiao Y,Dai P Z,et al. Numerical simulation and parameter optimization on inward flanging for tube [J]. Forging & Stamping Technology,2020,45(1):80-88.
[23]赵熹. 大口径弹体辊挤-引伸成形技术研究[D]. 太原:中北大学,2014.
Zhao X. Study on Roll Extrusion-drawing Forming Technology of Large Caliber Projectile [D]. Taiyuan: North University of China, 2014.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com